引言
对于流量大且对访问效率有要求的业务场景,我们经常通过使用redis作为缓存处理,以提高查询效率。
但是redis在使用过程中有缓存击穿和缓存雪崩常见问题,本文主要介绍在什么什么矿会发生这两个问题以及详细的解决方案。
正文
Redis 的缓存击穿和缓存雪崩是两个常见的缓存问题。
缓存击穿(Cache Miss)
缓存击穿发生在当某个热点数据在缓存中失效或者被删除时,导致大量的请求直接打到数据库上,造成数据库的压力增大甚至宕机
。这种情况下,缓存就像被击穿了一样,无法起到应有的缓冲作用。
解决方案:
- 锁机制:在查询数据库之前,先获取一个锁,确保只有一个线程能够执行数据库查询操作,其他线程等待锁释放。
// 使用Redis的SETNX命令实现锁机制
String cacheKey = "user:" + userId;
String lockKey = cacheKey + ":lock";
String result = redisTemplate.execute((RedisCallback<String>) connection -> {
if (connection.setNX(lockKey.getBytes(), "1".getBytes())) {
try {
// 从数据库中获取数据
User user = getUserFromDB(userId);
// 将数据写入缓存
redisTemplate.opsForValue().set(cacheKey, user);
} finally {
// 释放锁
connection.del(lockKey.getBytes());
}
return "Success";
} else {
// 如果锁已经被占用,等待一段时间后重新尝试
Thread.sleep(100);
return "Failed";
}
});
- 异步更新:使用异步任务来更新缓存,而不是实时更新。
ExecutorService executor = Executors.newFixedThreadPool(10);
// 当缓存失效时,提交一个异步任务来更新缓存
if (redisTemplate.hasKey(cacheKey)) {
executor.submit(() -> {
User user = getUserFromDB(userId);
redisTemplate.opsForValue().set(cacheKey, user);
});
}
缓存雪崩(Cache Stampede)
缓存雪崩发生在当大量的缓存数据同时过期时,导致大量的请求同时打到数据库上,造成数据库的压力增大甚至宕机
。这种情况下,缓存就像被一大片雪崩覆盖了一样,无法起到应有的缓冲作用。
解决方案:
- 随机过期时间:在设置缓存过期时间时,给每个缓存项加上一个随机的时间值,避免所有的缓存项在同一时间过期。
int randomExpireTime = (int) (Math.random() * 1000); // 生成一个0到1000之间的随机数
redisTemplate.opsForValue().set(cacheKey, user, 60 + randomExpireTime, TimeUnit.SECONDS);
- 分散过期时间:将缓存数据分成多组,每组的过期时间不同,分散缓存失效的时间点。
// 将缓存数据分成5组
int groupIndex = userId % 5;
int expireTime = 60 * (groupIndex + 1); // 每组的过期时间不同
redisTemplate.opsForValue().set(cacheKey, user, expireTime, TimeUnit.SECONDS);
总结
以上是解决 Redis 缓存击穿和缓存雪崩问题的一些常见方法。实际应用中,可以根据具体情况选择合适的解决方案。