由于海洋中的大量的散射体分布是不均匀的,对声波的散射也是不均匀的,这些不均匀性在海中的分布是完全无规则的,每个不均匀性的散射声波的相位也是随机的。因而,作为大量的这种散射波迭加总和的混响,仍是一个随机过程。混响信号的强度是随时间而衰减的,由于随机信号(过程)的强度即等于其方差,所以它是一个非平稳过程。为了对混响进行统计分析,首先要对混响进行平稳化处理,即所谓的动态范围压缩和归一化”技术,从而使输入处理器的混响包络平均值或方差平稳化。由于随机信号概率密度分布特性、相关特性和谱特性理论是基于平稳条件下定义的,无论是采用"恒虚警”技术,还是“预平稳化”方法,平稳化处理主要是针对非平稳信号的强度而言,而不是针对随机信号本身的统计特性进行处理,因此,平稳化处理后的混响信号的统计特性不会因此而发生变化。这样就可以应用通常描述随机过程的数学方法对其进行分析研究。
取模过程:
使用 hilbert(x)
计算解析信号,其模(abs(hx)
)即为原信号的包络(幅值函数),数学上等价于:
其中 是
的希尔伯特变换(解析信号的虚部)。
α滤波过程:
function new_x = stationary(x, alpha)
% 计算希尔伯特变换并提取幅值函数
hx = hilbert(x); % 解析信号(实部为x,虚部为希尔伯特变换结果)
y = abs(hx); % 幅值函数(等价于 sqrt(x.^2 + (imag(hx)).^2))
N = length(y);
hat_y = zeros(size(y)); % 初始化滤波后信号
hat_y(1) = y(1); % 第一个样本直接赋值
% α滤波递归计算
for k = 2:N
hat_y(k) = hat_y(k - 1) + alpha * (y(k) - hat_y(k - 1)); %权系数倒数
end
new_x = x./ hat_y;
end
仿真:
原始混响数据:
平稳化后: