计算机视觉与深度学习-图像分割-视觉识别任务01-语义分割-【北邮鲁鹏】

本文介绍了视觉识别任务中的语义分割,探讨了滑动窗口方法的缺点,全卷积的优缺点,以及下采样、上采样(包括pooling、unpooling、IndexUnpooling和MaxUnpooling)、转置卷积和UNET在解决这些问题上的应用。
摘要由CSDN通过智能技术生成

视觉识别任务

在这里插入图片描述

语义分割

语义分割定义

给每个像素分配类别标签。

不区分实例,只考虑像素类别。

在这里插入图片描述

语义分割思路:滑动窗口

在这里插入图片描述

滑动窗口缺点

重叠区域的特征反复被计算,效率很低。

所以针对该问题提出了新的解决方案–全卷积。

语义分割思路(全卷积)

让整个网络只包含卷积层,一次性输出所有像素的类别预测。
在这里插入图片描述

全卷积优点

不用将图片分为一个个小区域然后再对这一个个小区域进行分类,而是一次性输出像素的类别预测,减少了重叠区域重复计算,从而减少了运算量,加快了运算速度。

全卷积缺点

1 处理过程中一直保持原始分辨率,即卷积过程中一直保持图片长宽不变。对于显存的需求会非常庞大,甚至使得前向数据不能完整的保存在显存中。

针对这个问题,提出了先下采样然后上采样。

2 上采样是根据下采样得到的高级语义得到的,但是有时候高级语义效果并不好,还需要使用低级语义。

针对这个问题,提出了Unet,将下采样过程中的低级语义整合到上采样过程中,从而使得效果更好。

先下采样再上采样

在这里插入图片描述

下采样算法

pooling(池化)

strided convolution

上采样算法

unpooling(反池化)
nearest neighbor

对于每个池化区域,最近邻反池化会将池化后的值复制到恢复区域的每个位置,以填充恢复区域。这样,可以将特征图恢复到与池化之前相同的尺寸。
在这里插入图片描述
需要注意的是,最近邻反池化是一种近似的逆操作,因为池化操作中的信息丢失是不可逆的。因此,最近邻反池化只能恢复到大致相似的尺寸和分布,而无法完全还原原始特征图。

bed of nails

对于每个池化区域,最近邻反池化会将池化后的值把数据放在左上角,其他位置置零,以填充恢复区域。这样,可以将特征图恢复到与池化之前相同的尺寸。
在这里插入图片描述

unpooling缺点

人为给定的像素值可能是噪声。
人为给定的非0像素值可能原来并不在当前位置。

针对这些问题,提出了反池化操作思想–index Unpooling。

Index Unpooling

Index Unpooling的基本原理是根据池化时记录的最大值索引位置,将池化后的特征值放回到对应的恢复区域中。具体而言,对于每个最大值索引位置,Index Unpooling会将一个固定的值(例如1)放置在对应的恢复区域中,其余位置为零。通过这种方式,可以恢复出与池化之前相同尺寸的特征图。

max unpooling(反池化)

方式一(固定写死)

对于一些模型来说,上采样和下采样的结构往往是对称的,可以在下采样的Max Pooling时记录最大值的位置,在unpooling的时候把数据还原到最大值的位置,其余位置置零。

在这里插入图片描述

转置卷积(Transpose Convolution)

方式二(自动学习)

回顾

3 × 3 3 \times 3 3×3卷积,步长(stride)1,零填充(pad)1
在这里插入图片描述

3 × 3 3 \times 3 3×3卷积,步长(stride)2,零填充(pad)1
在这里插入图片描述

一维例子
在这里插入图片描述
步长为1

下采样
在这里插入图片描述
上采样
在这里插入图片描述

步长为2
在这里插入图片描述

UNET

上采样是根据下采样得到的高级语义得到的,但是有时候高级语义效果并不好,还需要使用低级语义。

针对这个问题,提出了Unet,将下采样过程中的低级语义整合到上采样过程中,从而使得效果更好。

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值