YOLOv1基本设计原理
Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,将其视为一个单一回归问题。
一.一张图片首先Resize到448x448的size;原论文中给出的理由是:检测通常需要细粒度的视觉信息,因此我们将网络的输入分辨率从 224 × 224 增加到 448 × 448。
二.将输入的图片变成切割成 S*S的网格(单元格);(在文章后边令S=7。)
三.每一个单元格要预测B个边界框(bounding box)以及边界框的置信度(confidence score);
置信度包含两方面内容:(原谅我直接从写好的Typora上截图)

四.边界框的大小与位置可以用4个值来表征。

五.对于每一个单元格其还要给出预测出 C个类别概率值,表示该单元格负责预测的边界框中的目标属于各个类别的概率。

本文深入探讨YOLOv1算法的设计原理,包括如何通过单个CNN模型实现端到端的目标检测,图像Reszie的原因,S*S网格划分,每个单元格预测的边界框及置信度,以及类别概率。Yolo算法使用均方差损失函数,并强调误差度量对大边界框中的小偏差更为重要。下篇将介绍网络结构、Pytorch实现及非极大值抑制算法。
最低0.47元/天 解锁文章
:YOLOv1笔记一(原理部分)&spm=1001.2101.3001.5002&articleId=123722472&d=1&t=3&u=548c526e654941dcb4e943fa6b0f6157)
20万+

被折叠的 条评论
为什么被折叠?



