YOLO v1 原理深度讲解

YOLO v1算法作为实时检测的先驱,以其快速和简洁著称。通过s*s网格分割图像,每个网格预测两个候选框并计算IOU以确定最佳匹配。算法将检测问题转化为回归问题,每个网格预测物体中心、大小及置信度。虽然固定尺寸限制和小物体检测不足是其局限,但YOLO v1的创新仍对目标检测领域产生了深远影响。
摘要由CSDN通过智能技术生成

首先来看,yolo算法是一个one-stage的算法,即一步直达,所以速度非常快,适合做实时检测。缺点就是没有那么精确。

有一个概念MAP:这个指标是为了去衡量综合的检测效果。

这里牵扯到另一个概念就是召回率

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3xoPTIZ2-1621343647829)(assets/image-20210517163953-bgoy8qh.png)]{: id="20210517163934-n9jh84z" updated="20210517163953"}

关于预测结果我们可以分为四类:

TP(真阳性) 预测为真的样本中确实为真的数量。
FP(假阳性) 预测为真的样本中确实为假的数量。
FN(假阴性) 预测为假的样本中确实为真的数量。
TN(真阴性) 预测为假的样本中确实为假的数量。

举个例子来说明

预测某些病人有没有得癌症。

假设有100个样本,真实情况是有10个得癌症的,通过预测函数遇到到了有12个得了癌症,其中有8个是真实得癌症的。

这种情况下:

TP=8

FP=12-8=4

FN=10-8=2

TN=(100-12)-2=86

所以准确率:

准确率 Accuracy

正确预测为1,正确预测为0的样本比率,公式为:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-P7o943a7-1621343647831)(https://math.jianshu.com/math?formula=\frac%7BTP%2BTN%7D%7BALL%7D)]

上例中准确率为https://math.jianshu.com/math?formula=\frac%7B8%2B86%7D%7B100%7D%3D0.94

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值