首先来看,yolo算法是一个one-stage的算法,即一步直达,所以速度非常快,适合做实时检测。缺点就是没有那么精确。
有一个概念MAP:这个指标是为了去衡量综合的检测效果。
这里牵扯到另一个概念就是召回率:
关于预测结果我们可以分为四类:
TP(真阳性) 预测为真的样本中确实为真的数量。
FP(假阳性) 预测为真的样本中确实为假的数量。
FN(假阴性) 预测为假的样本中确实为真的数量。
TN(真阴性) 预测为假的样本中确实为假的数量。
举个例子来说明
预测某些病人有没有得癌症。
假设有100个样本,真实情况是有10个得癌症的,通过预测函数遇到到了有12个得了癌症,其中有8个是真实得癌症的。
这种情况下:
TP=8
FP=12-8=4
FN=10-8=2
TN=(100-12)-2=86
所以准确率:
准确率 Accuracy
正确预测为1,正确预测为0的样本比率,公式为:
上例中准确率为