卷积层、池化层输出图片大小计算

本文详细介绍了卷积层和池化层在深度学习中的输出图片大小计算方法,指出两者计算公式相同,并通过MNISTCNN模型的代码实例说明了参数对输出尺寸的影响。
摘要由CSDN通过智能技术生成


卷积层输出图片大小 计算公式

输入图像大小——Input:n×n
填充大小——Paddings:p
步长——Stride:s
卷积核大小——Filter:k×k

输出图片大小计算公式:
⌊ n + 2 p − k s + 1 ⌋ × ⌊ n + 2 p − k s + 1 ⌋ \lfloor\frac{n+2p-k}{s}+1 \rfloor × \lfloor\frac{n+2p-k}{s}+1 \rfloor sn+2pk+1×sn+2pk+1
默认的p=0,s=1

池化层输出图片大小 计算公式

输入图像大小——Input:n×n
填充大小——Paddings:p
步长——Stride:s
池化窗大小——Filter:k×k
输出图片大小计算公式:
⌊ n + 2 p − k s + 1 ⌋ × ⌊ n + 2 p − k s + 1 ⌋ \lfloor\frac{n+2p-k}{s}+1 \rfloor × \lfloor\frac{n+2p-k}{s}+1 \rfloor sn+2pk+1×sn+2pk+1
其实,发现池化层输出图片计算公式与卷积层输出图片计算公式一样。
默认p=0,默认s=k,即没有明确指明池化层stride大小时,stride默认是池化窗口的大小,即s=k,这点是和卷积层不同的!!!

示例

以MNIST的CNN模型为例,代码如下:

class CNNMnist(nn.Module):
    def __init__(self, args):
        super(CNNMnist, self).__init__()
        self.conv1 = nn.Conv2d(args.num_channels, 10, kernel_size=5) # 输入通道数(RGB是3,灰度图是1)、输出通道数、卷积核大小5*5
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, args.num_classes)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, x.shape[1]*x.shape[2]*x.shape[3])
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

MNIST图像是28×28大小的灰度图,即Input:28×28,args.num_channels=1
默认p=0,s=1

  • 第一个cov1,(28+2×0-5)/1 +1=24
    因输出通道设为了10,所以第一个卷积层输出图像大小为:10×24×24
  • 第一个max_pool2d,(24+2×0-2)/2 +1=12
    因池化参数设为了2,即k=2,默认s=k=2,所以第一个池化层输出图像大小为:10×12×12
  • 第二个cov2,(12+2×0-5)/1 +1=8
    因输出通道设为了20,所以第一个卷积层输出图像大小为:20×8×8
  • 第二个max_pool2d,(8+2×0-2)/2 +1=4
    因池化参数设为了2,即k=2,默认s=k=2,所以第一个池化层输出图像大小为:20×4×4=320
    所以卷积层的输出大小=下一层设置的全连接层的输入大小,即全连接层的输入图像大小设置为了320

代码总结

卷积层代码

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) 
input:输入图像大小, shape为:(minibatch,in_channels,𝑖𝐻,𝑖𝑊)
weight:这是卷积核的参数。它是一个四维张量,形状为 (out_channels, in_channels, kernel_height, kernel_width)。其中 out_channels 是输出通道数,kernel_height 和 kernel_width 是卷积核的高度和宽度。
bias:是可选的偏置项。如果设置了,它是一个一维张量,形状为 (out_channels,)。每个输出通道都会加上对应的偏置。
stride:步长,默认为1
padding:填充,默认为0
dilation:这是卷积核内部元素之间的间距。默认为1,表示卷积核中每个元素之间相邻。可以设置为大于1的整数,以增加卷积核的感受野,而不增加参数数量。
groups:这是输入和输出之间连接的通道数。默认为1,表示传统的卷积,其中每个输入通道都连接到每个输出通道。可以设置为大于1的整数,以实现分组卷积操作,其中输入通道和输出通道被分成若干组,每组之间进行卷积操作,然后将结果连接起来。

池化层代码

torch.nn.functional.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)
Parameters
input:输入图像大小
kernel_size:池化层窗口
stride:步长,默认为 kernel_size
padding:填充
dilation:(可选)扩张率,默认为1。用于控制窗口中元素之间的间距,类似于卷积中的空洞卷积
ceil_mode:(可选)是否使用“天花板模式”。如果设置为 True,将使用天花板函数(即向上取整)来计算输出大小。默认为 False
return_indices:(可选)是否返回池化操作对应的索引张量。默认为 False。当需要使用最大池化的反向传播时,可能需要保留最大值的位置信息,因此可以设置此参数为 True,以获取池化操作对应的索引。
  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值