Python 深度学习 Class 4:机器学习基础

目录

4.1 机器学习分支

1.监督学习

2.无监督学习

3.自监督学习

4.强化学习

4.2 评估机器学习模型

1.数据划分

2.注意事项

4.3 数据预处理、特征工程和特征学习

1.预处理

2.特征工程

4.3 过拟合与欠拟合

1.减小网络大小

2.权重正则化

3.Dropout

4.5 通用工作流程 

1.定义问题,收集数据集

2.选择成功指标

3.确定评估方法

4.准备数据

5.模型开发

6.开发过拟合模型

7.正则化和调节超参数


玫瑰花香永不消逝

4.1 机器学习分支

1.监督学习

主要包括分类和回归,还有序列生成、语法树预测、目标检测、图像分割等

2.无监督学习

包括降维和聚类

3.自监督学习

没有人工标注的标签的监督学习

4.强化学习

4.2 评估机器学习模型

1.数据划分

在训练数据上训练模型,在验证数据上评估模型,在测试数据上做最终测试

若可用数据很少,可以使用以下几种评估方法。

(1)留出验证

留出一定比例的数据作为测试集。在剩余的数据上训练模型,然后在测试集上评估模型。

(2)K折验证

K折验证:将数据划分为大小相同的K个分区。对于每个分区i,在剩余的K-1 个分区上训练模型,然后在分区i 上评估模型。最终分数等于K 个分数的平均值。

(3)带有打乱数据的重复K 折验证

2.注意事项

(1)数据代表性:在将数据划分为训练集和测试集之前,通常应该随机打乱数据

(2)时间箭头:如果想要根据过去预测未来,那么在划分数据前你不应该随机打乱数据

(3)数据冗余:确保训练集和验证集之间没有交集

4.3 数据预处理、特征工程和特征学习

1.预处理

(1)向量化:神经网络的所有输入和目标都必须是浮点数张量

(2)标准化:输入数据特征:取值较小、同质性

(3)处理缺失值:一般来说,对于神经网络,将缺失值设置为0 是安全的

2.特征工程

指将数据输入模型之前,利用你自己关于数据和机器学习算法(这里指神经网络)的知识对数据进行硬编码的变换(不是模型学到的),以改善模型的效果。

特征工程优点:解决某些问题较为方便;所需数据量小

4.3 过拟合与欠拟合

机器学习的根本问题是优化和泛化之间的对立。优化(optimization)是指调节模型以在训练数据上得到最佳性能(即机器学习中的学习),而泛化(generalization)是指训练好的模型在前所未见的数据上的性能好坏。

正则化方法:

1.减小网络大小

防止过拟合的最简单的方法就是减小模型大小,即减少模型中可学习参数的个数。

要找到合适的模型大小,一般的工作流程是开始时选择相对较少的层和参数,然后逐渐增加层的大小或增加新层,直到这种增加对验证损失的影响变得很小。

2.权重正则化

给定一些训练数据和一种网络架构,很多组权重值(即很多模型)都可以解释这些数据。简单模型(参数值分布的熵更小的模型)比复杂模型更不容易过拟合。

常见降低过拟合法:强制让模型权重只能取较小的值,从而限制模型的复杂度。其实现方法是向网络损失函数中添加与较大权重值相关的成本。

(1)L1正则化化:添加的成本与权重系数的绝对值[权重的L1范数]成正比。

(2)L2正则化:添加的成本与权重系数的平方(权重的L2范数)成正比。神经网络L2正则化也叫权重衰减

3.Dropout

在训练过程中随机将该层的一些输出特征舍弃(设置为0)。dropout 比率(dropout rate)是被设为0 的特征所占的比例,通常在0.2~0.5范围内。

训练时对激活矩阵使用dropout,并在训练时成比例增大。测试时激活矩阵保持不变

4.5 通用工作流程 

1.定义问题,收集数据集

2.选择成功指标

平衡分类问题:精度和接收者操作特征曲线下面积

类不平衡问题:准确率和召回率

排序问题或多标签分类:平均准确率均值

3.确定评估方法

4.准备数据

5.模型开发

6.开发过拟合模型

7.正则化和调节超参数

这一步是最费时间的:你将不断地调节模型、训练、在验证数据上评估(这里不是测试数据)、
再次调节模型,然后重复这一过程,直到模型达到最佳性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值