Towards Robust Blind Face Restoration with Codebook Lookup Transformer(NeurIPS 2022) | Codeformer

Towards Robust Blind Face Restoration with Codebook Lookup Transformer(NeurIPS 2022)

这篇论文试图解决的是盲目面部恢复(blind face restoration)问题,这是一个高度不确定的任务,通常需要辅助指导来改善从低质量(LQ)输入到高质量(HQ)输出的映射,或者补充输入中丢失的高质量细节。具体来说,论文关注以下几个关键问题:

  • 如何在不知道具体退化过程的情况下(即盲目恢复),从严重退化的输入图像中恢复出高质量的面部图像。

  • 如何减少恢复映射的不确定性和模糊性,特别是在输入图像质量较低时。

  • 如何在保持高保真度的同时,生成具有丰富视觉细节的高质量面部图像。

为了解决这些问题,论文提出了一种基于Transformer的预测网络,名为CodeFormer,它利用在一个小的代理空间中学习的离散码本(codebook)先验,将盲目面部恢复任务转化为码预测任务。这种方法旨在通过全局建模低质量面部的组成和上下文,发现与目标面部紧密近似的自然面部,即使输入图像严重退化。此外,为了增强对不同退化类型的适应性,论文还提出了一个可控的特征转换模块,允许在保真度和质量之间进行灵活的权衡。

codeformer_2024-09-04_

本文的主要方法如下:

  1. 在高质量的数据集上训练一个VQVAE,得到一个具有清晰视觉细节的Decoder、CodeBook和Encoder
  2. 在低质量数据集上微调Encoder,并且在Encoder到CodeBook直接插入一个Transformer,用作LQ的Embdedding到HQ的Embedding的映射,因为空间是离散的,相当于一个分类预测任务了.注意transformer和Encoder是一起训练的.
  3. 一个CFT的short-cut来控制quality和fidelity之间的权衡.为什么这个CFT能控制,因为从encoder可通过short-cut传入的Embedding是能包含更多的信息,因此保真度(fidelity)更好,但是embedding的从LQ提取的,因此quality会变差.

上图给出了为什么使用VQVQE,因为VAE输出的Embedding是连续的,包含的潜空间太大,而VQVAE可以看作聚类,从LQ->HQ的映射,为了保证图像质量,我们希望这个映射空间较小,从而更可能生成高质量的图像.,更有利于模型学习.

codeformer_2024-09-04_

CodeFormer也可以用于图像编辑之类的.


  1. 做超分可以借鉴一下上述的pipeline
  2. 对于VQVAE、连续空间和离散空间的理解:连续空间包含更多信息,但是也会引入噪声;离散空间通过缩小映射空间从而过滤一下噪声.
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东风中的蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值