2F-TP: Learning Flexible Spatiotemporal Dependency for Flexible Traffic Prediction论文简析
论文的核心是利用下式:历史M个时间步(x)的交通信息预测未来H时间步(y)的交通信息:
1.首先构造基于道路距离的空间图和基于道路之间关系的语义空间图,Gd和Gp。如下式:
PS:用双空间图来进行构造在之前的论文中已经提出过
a.Gd=(V,E,Ad)邻接矩阵Ad的各个元素表示相应各个道路之间的距离
b.Gp用来体现空间依赖的时变性。
构建Gp的步骤如下:
第一,初始化一个可学习的权重矩阵用于第n次时间步的所有节点。记为
E(n)的第i行表示节点Vi的相应信息。
第二,我们用下式计算每两个节点的内积。
第三,再用Ac邻接矩阵和它相乘。如下式:
2.双图卷积公式定义如下:
3.双向选通递归层的公式如下:
接下来,我们使用两个并行GRL来形成一个Bi-GRL,以学习交通流的前向和后向顺序上下文。第n个时间步的传播可以表示为:
请注意,上述序列中的每个隐藏状态在一个时间步包含维度2F for Nnodes的时空特征。然后,我们将介绍如何从这些隐藏状态中提取更多信息量的时空特征,以用于未来的流量预测。
简单来说就是如下三个式子以及一个图:
即先平均池化,再采用了一种瓶颈结构,在非线性函数周围有两个完全连接的(FC)层来计算注意权重,最后用hn和a相乘:
然后再利用这个构建三个矩阵,即Q矩阵、K矩阵和V矩阵:
之后便是下图。