二元逻辑回归损失函数的数学解释与公式推导

我们基于极大似然法来推导二元逻辑回归的损失函数,这个推导过程能够帮助我们了解损失函数怎么
得来的,以及为什么 J ( θ ) J(\theta) J(θ)最小化能够实现模型在训练集上的拟合最好。

我们的目标是:让模型对训练数据的效果好,追求损失最小

二元逻辑回归的标签服从伯努利分布(即0-1分布),因此我们可以将一个特征向量为 x x x参数为 θ \theta θ的模型中的一个样本i的预测情况表现为如下形式:

  • 样本i在由特征向量 x i x_i xi和参数 θ \theta θ组成的预测函数中,样本标签被预测为1的概率为:

    P 1 = P ( y i ^ = 1 ∣ x i , θ ) = y θ ( x i ) P_1=P(\hat{y_i}=1|x_i,\theta)=y_{\theta}(x_i) P1=P(yi^=1xi,θ)=yθ(xi)

  • 样本i在由特征向量 和参数 组成的预测函数中,样本标签被预测为0的概率为:

    P 0 = P ( y i ^ = 0 ∣ x i , θ ) = 1 − y θ ( x i ) P_0=P(\hat{y_i}=0|x_i,\theta)=1-y_{\theta}(x_i) P0=P(yi^=0xi,θ)=1yθ(xi)

P 1 P_1 P1的值为1的时候,代表样本i的标签被预测为1,当 P 0 P_0 P0的值为1的时候,代表样本i的标签被预测为0。

假设样本i的真实标签 y i y_i yi为1,此时如果 P 1 P_1 P1为1, P 0 P_0 P0为0的时候,就代表样本i的标签被预测为1,与真实值一致。此时对于单样本i来说,模型的预测就是完全准确的,拟合程度很优秀,没有任何信息损失。

相反,如果 P 1 P_1 P1为0, P 0 P_0 P0为1的时候,就代表样本i的标签被预测为0,与真实情况完全相反。对于单样本i来说,模型的预测就是完全错误的,拟合程度很差,所有的信息都损失了。

y i y_i yi为0时,也是同样的道理,所以,当 y i y_i yi为1的时候,我们希望 P 1 P_1 P1非常接近1, 当 y i y_i yi为0的时候,我们希望 P 0 P_0 P0非常接近1,这样,模型的效果就很好,信息损失就很少。

在这里插入图片描述
将两种取值的概率整合,我们可以定义如下等式:
P ( y i ^ ∣ x i , θ ) = P 1 y i ∗ P 0 1 − y i P(\hat{y_i}|x_i,\theta)=P_1^{y_i}*P_0^{1-y_i} P(yi^xi,θ)=P1yiP01yi

这个等式代表同时代表了 P 0 P_0 P0 P 1 P_1 P1,当样本i的真实标签 y i y_i yi为1的时候 1 − y i 1-y_i 1yi 就等于0, P 0 P_0 P0 的0次方就是1,所以 P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ)等于 P 1 P_1 P1,这时,如果 P 1 P_1 P1为1,模型的效果就很好,损失就很小。同理,当 y i y_i yi为0的时候 P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ)等于 P 0 P_0 P0,此时如果 P 0 P_0 P0非常接近1,模型的效果就很好,损失就很小。所以,为了达成让模型拟合好,损失小的目的,我们每时每刻都希望 P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ) 的值等于1。 P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ)本质是样本i由特征向量 x i x_i xi和参数 θ \theta θ组成的预测函数中,预测出所有可能的 y ^ \hat{y} y^的概率,因此1是它的最大值。

也就是说,每时每刻,我们都在追求 P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ) 的最大值。这就将模型拟合中的“最小化损失”问题,转换成了对函数求解极值的问题。

P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ)是对单个样本i而言的函数,对一个训练集的m个样本来说,我们可以定义如下等式来表达所有样本在特征矩阵X和参数 θ \theta θ组成的预测函数中,预测出所有可能的 y ^ \hat{y} y^的概率P为:
P = ∏ i = 1 m P ( y i ^ ∣ x i , θ ) = ∏ i = 1 m ( P 1 y i ∗ P 0 1 − y i ) = ∏ i = 1 m ( y 0 ( x i ) y i ∗ ( 1 − y 0 ( x i ) ) 1 − y i )            将 开 头 的 P 1 和 P 0 带 入 \begin{aligned} P&=\prod_{i=1}^mP(\hat{y_i}|x_i,\theta) \\&=\prod_{i=1}^m(P_1^{y_i}*P_0^{1-y_i}) \\&=\prod_{i=1}^m(y_0(x_i)^{y_i}*(1-y_0(x_i))^{1-y_i}) ~~~~~~~~~~将开头的P_1和P_0带入 \end{aligned} P=i=1mP(yi^xi,θ)=i=1m(P1yiP01yi)=i=1m(y0(xi)yi(1y0(xi))1yi)          P1P0

对该概率P取对数,再由 log ⁡ ( A ∗ B ) = log ⁡ A + log ⁡ B \log(A*B)=\log A+\log B log(AB)=logA+logB log ⁡ A B = B log ⁡ A \log A^B=B\log A logAB=BlogA可得:
log ⁡ P = log ⁡ ∏ i = 1 m ( y 0 ( x i ) y i ∗ ( 1 − y 0 ( x i ) ) 1 − y i ) = ∑ i = 1 m log ⁡ ( y 0 ( x i ) y i ∗ ( 1 − y 0 ( x i ) ) 1 − y i ) = ∑ i = 1 m ( log ⁡ y θ ( x i ) y i + log ⁡ ( 1 − y θ ( x i ) ) 1 − y i ) = ∑ i = 1 m ( y i log ⁡ y θ ( x i ) + ( 1 − y i ) log ⁡ ( 1 − y θ ( x i ) ) ) \begin{aligned} \log P&=\log\prod_{i=1}^m(y_0(x_i)^{y_i}*(1-y_0(x_i))^{1-y_i}) \\&=\sum_{i=1}^m\log(y_0(x_i)^{y_i}*(1-y_0(x_i))^{1-y_i}) \\&=\sum_{i=1}^m(\log y_{\theta}(x_i)^{y_i}+\log(1-y_{\theta}(x_i))^{1-y_i}) \\&=\sum_{i=1}^m(y_i\log y_{\theta}(x_i)+(1-y_i)\log(1-y_{\theta}(x_i))) \end{aligned} logP=logi=1m(y0(xi)yi(1y0(xi))1yi)=i=1mlog(y0(xi)yi(1y0(xi))1yi)=i=1m(logyθ(xi)yi+log(1yθ(xi))1yi)=i=1m(yilogyθ(xi)+(1yi)log(1yθ(xi)))

这就是我们的交叉熵函数。为了数学上的便利以及更好地定义”损失”的含义,我们希望将极大值问题转换为极小值问题,因此我们对 log ⁡ P \log{P} logP取负,并且让参数 θ \theta θ作为函数的自变量,就得到了我们的损失函数 J ( θ ) J(\theta) J(θ)
J ( θ ) = − ∑ i = 1 m ( y i log ⁡ y θ ( x i ) + ( 1 − y i ) log ⁡ ( 1 − y θ ( x i ) ) ) J(\theta)=-\sum_{i=1}^m(y_i\log y_{\theta}(x_i)+(1-y_i)\log(1-y_{\theta}(x_i))) J(θ)=i=1m(yilogyθ(xi)+(1yi)log(1yθ(xi)))

这就是一个,基于逻辑回归的返回值 y θ ( x i ) y_{\theta}(x_i) yθ(xi)的概率性质得出的损失函数。在这个函数上,我们只要追求最小值,就能让模型在训练数据上的拟合效果最好,损失最低。这个推导过程,其实就是“极大似然法”的推导过程。

似然与概率

  • 似然与概率是一组非常相似的概念,它们都代表着某件事发生的可能性,但它们在统计学和机器学习中有着微妙的不同。以样本i为例,表达式为:
    P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ)
    对这个表达式而言,如果参数 θ \theta θ是已知的,特征向量 x i x_i xi是未知的,我们便称P是在探索不同特征取值下获取所有可能的 y ^ \hat{y} y^的可能性,这种可能性就被称为概率,研究的是自变量和因变量之间的关系。

    如果特征向量 x i x_i xi 是已知的,参数 θ \theta θ 是未知的,我们便称P是在探索不同参数下获取所有可能的 y ^ \hat{y} y^ 的可能性,这种可能性就被称为似然,研究的是参数取值与因变量之间的关系。

    在逻辑回归的建模过程中,我们的特征矩阵是已知的,参数是未知的,因此我们讨论的所有“概率”其实严格来说都应该是“似然”。我们追求 P ( y i ^ ∣ x i , θ ) P(\hat{y_i}|x_i,\theta) P(yi^xi,θ) 的最大值(换算成损失函数之后取负了,所以是最小值),就是在追求“极大似然”,所以逻辑回归的损失函数的推导方法叫做”极大似然法“。也因此,以下式子又被称为”极大似然函数“:
    P ( y i ^ ∣ x i , θ ) = y 0 ( x i ) y i ∗ ( 1 − y 0 ( x i ) ) 1 − y i P(\hat{y_i}|x_i,\theta)=y_0(x_i)^{y_i}*(1-y_0(x_i))^{1-y_i} P(yi^xi,θ)=y0(xi)yi(1y0(xi))1yi

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值