网络构建
神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个,它由不同的子构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。
1.定义模型类
当我们定义神经网络时,可以继承`nn.Cell`类,在`__init__`方法中进行子Cell的实例化和状态管理,在`construct`方法中实现Tensor操作。
我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。
2.模型层
本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。
(1) nn.Flatten
实例化[nn.Flatten]层,将28x28的2D张量转换为784大小的连续数组。
(2)nn.Dense
[nn.Dense]为全连接层,其使用权重和偏差对输入进行线性变换。
(3)nn.ReLU
给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。
(4)nn.SequentialCell
是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用`SequentialCell`来快速组合构造一个神经网络模型。
(5)nn.Softmax
最后使用[nn.Softmax]将神经网络最后一个全连接层返回的logits的值缩放为\[0, 1\],表示每个类别的预测概率。`axis`指定的维度数值和为1。
3.模型参数
网络内部神经网络层具有权重参数和偏置参数(如`nn.Dense`),这些参数会在训练过程中不断进行优化,可通过 `model.parameters_and_names()` 来获取参数名及对应的参数详情。
学习时间以及学习者id: