【11月机器学习】Introduction

文章内容仅供参考,不能保证百分百正确,如有错误,感谢各位大佬在评论区指出,求亲喷orz。

视频参考链接 1-机器学习介绍_哔哩哔哩_bilibili

Scenario

Supervised Learning (监督学习)

监督学习在基于大量数据标注的基础上学习,大部分研究均基于此。见得多,学的多,但也有可能看某一类东西太多(样本不平衡),导致机器出现“倾向性”判断。


Semi-Supervised Learning (半监督学习)

李宏毅老师在视频中举的猫狗识别例子,即有一部分猫狗有标签和一部分猫狗没有标签的这样一批数据同时丢给机器学习,用于猫狗识别任务。这一部分没有标签的数据同样能起作用,具体什么作用,李老师留了一个悬念,那我先百度为快orz。

参考链接(本文简单整理自己觉得重要的,更多建议看原链接)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值