3b1b线代笔记

矩阵乘法

矩阵乘法表示一种变换

行列式

表示平面或空间中面积或体积的变化,正数表示面积或体积的变化比例,0表面被压缩到了低维,负数表明平面或空间发生了翻转

行列式为0压缩到下一维度,自然也就线性相关了

对这个面积变化的直观理解是还是要联系平面空间的变化

逆矩阵

逆矩阵即反向的变换,矩阵A的变换与A的逆矩阵的变换是相反的

一个向量经过变换后与另一个向量重合,找到这个变换对应的向量即为求方程组的过程,所以逆矩阵可用来求解方程组,即将结果向量经过逆矩阵变换即可得到所求向量

因为一条线不能够解压为一个平面,所以行列式为0时不存在逆矩阵

秩表示列空间的维度,满秩时秩与列数相等

列空间

所有可能的变换结果的集合

零空间/核

即变换后压缩为零向量的所有向量组成了零空间,这些向量也是该变换对应的齐次方程的所有解

非方阵

下面的非方阵是满秩的,表示的是三维空间中的一个二维平面
在这里插入图片描述

下面的非方阵表示三位空间到二维空间的映射,3列表示有三个基向量,2行用用二维坐标表示这三个基向量

在这里插入图片描述

点积

点积表示一个向量的投影长度乘另一个向量的长度,或者说点积表示投影

也可以理解为将其中一个向量转化后进行线性变换

矩阵变换可能会改变点积,不改变的矩阵变换被称之为正交变换

叉积

假如有两个三维向量得到一个叉乘向量,叉乘向量点积一个向量等于那两个向量和这个向量的三阶行列式或者说是体积

基变换

在这里插入图片描述

特征向量与特征值

一个矩阵的(线性变换)的特征向量表示在这个方向上的向量没有改变方向只是简单的被压缩或者拉伸,而压缩或拉伸的倍数则为特征值

由Av=λv可以看出特征向量经过线性变换后的方向未发生改变,对v进行A线性变换等价于对v改变λ倍

一种解读对角矩阵的方法是,所有的基向量都是特征向量

原线性变换可以转换为以特征向量为基向量的对角矩阵,然后你可以对这个矩阵运算后转化为原来基向量下的矩阵,应用了基变换,显然要化为对对角矩阵需要特征值的数量等于秩
在这里插入图片描述

抽象向量空间

只要处理的对象具有合理的数乘和相加性质,线性代数中的概念都适用于它而这些被称为向量空间,它满足下面八条公理

在这里插入图片描述
用矩阵求导

在这里插入图片描述

克莱姆法则

(x,y)经过矩阵A的线性变换后变为了(4,2),求(x,y)

(x,y)与(1,0)构成的两向量组成的平行四边形面积为y,将这两个矩阵经过矩阵A变换后得到(4,0)与矩阵A的第一列,计算出这两个向量组成的矩阵的行列式,即面积后除以A的行列式即为y。 同样的方法可求得x

在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值