观3b1b线性代数本质系列视频的思考感悟

1.非齐次线性方程组有解充要条件的几何解释(R(A)=R(B) )
·  如果a的秩小于n,说明经该矩阵变化后的解向量空间少了一个纬度,比如二维的就变成了一条线。此时,ax的x向量都会被压缩在直线上,在这条直线上的向量都与a矩阵的列向量线性相关。所以ax=v的v如果存在,必然与a的列向量之一线性相关,从而a和b秩相等。
·  如果a的秩等于n,首先b的秩不可能小于a。其次,b秩大于a,说明v向量多了一个维度,这也是伸缩变化实现不了的。
综上所述,a的秩一定等于b的秩


2.关于齐次线性方程组与非齐次线性方程组基础解系结构的思考

齐次线性方程组有只有零解和无限解之分,是因为当矩阵满秩时,零向量只能由零向量收缩得到。但是非满秩时,就可以由其他特定向量得到,这些特定向量组成了齐次线性方程组的解空间。
齐次线性方程组的解向量收缩完是0。所以非齐次线性方程组的基础解系为特解+齐次解,前者收缩后成为v,后者因为收缩会变0所以无影响。
非齐次线性方程组之所以分为无限解和特解,还是因为有对应的齐次方程组的无限解和零解情况。非齐次线性方程组实际上只有一个特解,其他解都是由齐次线性方程组决定的。


3为什么解空间的维数=方阵的阶数-秩?

设方阵阶数为n,乘上秩为r的矩阵A本质是把n维空间缩到了一个r维空间。而对于r维空间的向量,也就是Ax=v中的v,能变化成v的x所组成的空间维数一定是n-r。好比n=3,r=2,缩成了二维平面,也只有一条直线能缩成二维平面上的一个点【点代表向量】,这条直线就是x的解空间。而n=3,r=1,就可以有一个面能缩成一条线。太妙了,本渣渣深感数学的神奇

4.伴随矩阵的几何意义

​​​​​​请问伴随矩阵在几何空间的意义是什么? - 知乎

受益匪浅

5.

嘟嘟噜嘟噜嘟嘟噜

非方阵可以补0使之成为方阵~

2020-05-21 13:1713回复

6.关于点积

如果把一个向量当作一条数轴,那么空间x该向量所形成的矩阵(ux,uy)就能收缩成该直线,并且空间中每一个二维点都垂直映射在这条直线上(投影)。点积本质上是求,一个上文所说的收缩施加在一个向量身上后所得的向量在数轴上的位置。

因为被收缩的向量线性变换后会落在该直线上,故而数值为投影值相乘。

如果你看到一个线性变换,它最终会输出一维空间,那么完全可以把它看作一个点积计算。

矩阵秩为1,可以看作点积

多维到一维空间的线性变换映射着一个向量,一个向量定义的线性变换由多维到一维,具有对偶性 

向量不仅仅是符号,可以看作是储存线性变换的物质容器。想象出一个向量比想象出具体变换可容易多了。

7.关于叉乘

记得之前所说的行列式的意义。

对于标准二维坐标系,x、y轴单位向量所围成的小平行四边形【矩形】面积为1.而乘上一次线性变换,x、y轴单位向量倾斜,小平行四边形的面积变为1*缩放倍率,即detA。

而叉乘是两个普通的向量围成的平行四边形的值。我们可以理解为是,把标准的二维空间,收缩变化成以叉乘的两个向量为i、j空间单位向量的空间。因而。两个普通向量围成的面积就等于1*detA,其中两个普通向量为A的两个列向量。

由此可窥见一种把空间收缩去解决问题的思维方法。

8.相似矩阵的含义

T-1AT=B。称A与B相似,A到B进行了相似变换,T为相似变换矩阵。

将标准正交坐标系左乘某个矩阵,我们就完成了空间的变换,即进行了基变换操作,左乘的那个矩阵的列向量就是新的i和j。我们设左乘矩阵为T。T是基。

设有一个变换为A,A的列向量代表进行变换完之后我们的基ij的去处。我们想对标准正交坐标系进行该变换,只需在单位阵左乘A就行,即AE。

我们想对完成了基变换的空间,即对TE=T完成相同的变换。但显然不能使用A,因为A描述的是我们的坐标基ij进行变换后的坐标,于是我们新设一个变换矩阵B,代表T坐标系经过B变换后得到的结果。

于是我们的想法是,把T坐标系的向量转化成我们的坐标系,施加A变换后再转回去,就得到了变换成功的矩阵。

任取A中向量v。Tv操作把v的坐标转化成了以i、j为基的坐标。

施加A变换->ATv

变回去->T-1ATv

如此一来,我们所寻找的B变换就出世了:B=T-1AT。

因而,这就是相似矩阵的意义。如果B对于T坐标系的变换等于A对于标准正交系的变换,那么称A、B两个变换相似。

这下子我可以理解为什么说等价矩阵和相似矩阵一样,都是对矩阵的一种简化了。

等价矩阵说的是经过一系列初等变换,把矩阵化成标准型,写作PAQ=E,这不就是经过空间压缩伸展化为正交型吗!并且由于PQ是可逆的,所以PQ不会使维度丢失,因而最后得到的单位阵跟A的秩是一样的。研究正交阵,应该比研究普通的A好。

相似矩阵也是把对某个复杂基的B变换,转化成了对正交基的A变换,也简化了变换的思想。

9.特征向量、特征值

特征向量是变换后仍在原来的直线上的向量,特征值是变换后向量的缩放比率。他的意义,比如可以找到3d的旋转变换的对称轴。在3d旋转变换的这种情况下,特征值应该是1,因为旋转不改变大小

特征向量和特征值不依赖于坐标系基向量,只与矩阵有关

10.相似对角化充要条件的理解 

方阵A可以相似对角化成对角阵B的充要条件是,A满秩,且T的n个列向量是A的n个线性无关的特征向量,且特征值为B对角线上的元素

这里我们可以把B看作是正交系中的变换,A看作是普通坐标系的变换。

首先,B是对角阵,说明B满秩。因而A也不应该是那种会丢失维度的变换,而应该与B一样满秩。

而对于后面那堆有关特征值的条件,可以看看特征值的定义

 看看图上特征值定义,并且由于入E可以左右乘都一样,可以化为:

Av=v入

是否可以看作是只有一个特征向量,特征值为入的特殊情况呢?此时入E为B,v相当于T的一个列向量。

如果以A的特征向量为列向量组,A(v1,v2,v3...)=(v1,v2,v3...)(入1,入2,入3)即AT=TB,即T-1AT=B。

这也是充要条件的计算上的证明。

至于几何上的理解:

如果把A的特征向量作为一组基(T),那么特征向量在A变换后只会改变缩放比率,且缩放比率就是特征值。因而,可以这么理解:对以特征向量为基的坐标系进行A变换,相当于对标准正交系进行B变换。

11.导数也是线性变换

 将函数视为无限维的向量,导数保持了函数向量的可加性和数乘性,因此导数是一种线性变换,可以由矩阵左乘表示。

这就是泰勒展开的作用之一了

12.万物皆向量

所以说,只要一个对象集,有相加、数乘的运算概念,满足以下公理,那么线性代数中所有关于向量的东西、线性变换、点积、特征值什么的,都可以用

13.补充思考

来自知乎文章从实对称矩阵串联线性代数几何意义 - 知乎

14.矩阵转置的意义

矩阵的转置的意义是什么? - 知乎

牛逼的

15.

不论坐标系怎么变换,对应的直观图形是不变的,只有其坐标会变。

这也是为什么我们要把二次型化为标准型,是为了观察其在两个坐标系下都相同的曲面形状。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值