面面角
两平面的夹角为所成角中较小的角。
n1为plane1的法向量,如plane1的平面方程为a1x + b1y + c1z + d1 = 0,n1的向量表达式为(a1, b1, c1)。
向量的点积
空间中有两个向量:n1 = (a1, b1, c1),n2 = (a2, b2, c2),n1与n2之间的夹角为θ。
代数角度:n1 ∙ n2 = a1 * a2 + b1 * b2 + c1 * c2;
几何角度:n1 ∙ n2 = |n1| * |n2| cosθ; 其中,|n1| = √(a1a1+b1b1+c1c1)。
代码部分
#include <opencv2/opencv.hpp>
Point3d n1(a1, b1, c1), n2(a2, b2, c2);
// 获得弧度
double get_angle(Point3d n1, Point3d n2){
double cosθ = abs(n1.x * n2.x + n1.y * n2.y + n1.z * n2.z) /
(sqrt(n1.x * n1.x + n1.y * n1.y + n1.z * n1.z) * sqrt(n2.x * n2.x + n2.y * n2.y + n2.z * n2.z))
double angle = std::acos(cosθ);
return angle;
}
// 弧度转换为角度
angle = angle * 180.0 / 3.1415;