Compressed Channel Estimation for Intelligent Reflecting Surface-Assisted Millimeter Wave Systems


摘要:在这封信中,我们考虑了智能反射面(IRS)辅助毫米波(mmWave)系统的信道估计,其中部署了IRS来辅助从基站(BS)到用户的数据传输。本文表明,为了实现联合主动式和被动式波束形成,需要获取大尺寸级联信道矩阵的知识。为了减少训练开销,利用了毫米波信道固有的稀疏性。利用Katri-Rao积和Kronecker积的性质,我们找到了级联信道的稀疏表示(sparse representation),并将级联信道估计转化为一个稀疏信号恢复问题。仿真结果表明,我们提出的方法可以提供准确的信道估计,并实现大量的训练开销减少。

II. SYSTEM MODEL AND PROBLEM FORMULATION

我们考虑了一个IRS辅助毫米波下行系统,其中部署了一个IRS来帮助数据从BS传输到单天线用户。假设IRS是一个平面阵列(planar array),有M个反射单元。BS配备了N个天线。设 G ∈ C M × N \boldsymbol{G} \in \mathbb {C}^{M \times N} GCM×N 表示从BS到IRS的通道, h r ∈ C M \boldsymbol{h}_r \in \mathbb {C}^{M} hrCM 表示从IRS到用户的通道。为了更好地说明我们的想法,我们忽略了从BS到用户的直接链接。然而,将场景扩展为从BS到用户的直接链接是很简单的。IRS的每个反射元件都可以通过智能控制器以可重构的相移和幅度反射入射信号[3]。表示

Θ ≜ diag ( β 1 e j θ 1 , … , β M e j θ M ) \begin{align*} \boldsymbol{\Theta } \triangleq \text{diag}(\beta _{1} e^{j\theta _{1}},\ldots,\beta _{M} e^{j\theta _{M}}) \tag{1} \end{align*} Θdiag(β1ejθ1,,βMejθM)(1)

为IRS相移矩阵,其中 θ m ∈ [ 0 , 2 π ] \theta _{m} \in [0,2\pi ] θm[0,2π] β m ∈ [ 0 , 1 ] \beta _{m} \in [0,1] βm[0,1] 分别表示IRS第m个无源元件相移系数和幅值反射系数。为简单起见,我们假设 β m = 1 , ∀ m \beta _m =1,\forall m βm=1,m 在这个文章的后续部分。

w ∈ C N \boldsymbol{w}\in \mathbb {C}^{N} wCN 为BS采用的波束形成矢量。用户在第 t t t 时刻接收到的信号由

y ( t ) = h r H Θ ( t ) G w ( t ) s ( t ) + ϵ ( t ) = ( a ) v H ( t ) diag ( h r H ) G w ( t ) s ( t ) + ϵ ( t ) = ( b ) v H ( t ) H w ( t ) s ( t ) + ϵ ( t ) \begin{align*} y(t) &= \boldsymbol{h}_{r}^H \boldsymbol{\Theta }(t) \boldsymbol{G} \boldsymbol{w}(t) s(t) + \epsilon (t) \\ & \stackrel{(a)}{=} \boldsymbol{v}^H(t) \text{diag} (\boldsymbol{h}_r^H) \boldsymbol{G} \boldsymbol{w}(t) s(t) + \epsilon (t) \\ & \stackrel{(b)}{=} \boldsymbol{v}^H(t) \boldsymbol{H} \boldsymbol{w}(t) s(t) + \epsilon (t) \tag{2} \end{align*} y(t)=hrHΘ(t)Gw(t)s(t)+ϵ(t)=(a)vH(t)diag(hrH)Gw(t)s(t)+ϵ(t)=(b)vH(t)Hw(t)s(t)+ϵ(t)(2)

其中 s ( t ) s(t) s(t) 是传输符号, ϵ ( t ) \epsilon (t) ϵ(t) 表示均值为零、方差为σ2的加性高斯白噪声,在(a)中,我们定义 v ≜ [ e j θ 1 0 … 0 e j θ M ] H ∈ C M \boldsymbol{v}\triangleq [e^{j\theta _1}\phantom{0}\ldots \phantom{0} e^{j\theta _M}]^H \in \mathbb {C}^{M} v[ejθ100ejθM]HCM,在(b)中,我们定义 H ≜ diag ( h r H ) G \boldsymbol{H}\triangleq \text{diag}(\boldsymbol{h}_r^H)\boldsymbol{G} Hdiag(hrH)G。这里的 H \boldsymbol{H} H 称为级联通道。基于(2)的一个重要观察是,在波束形成阶段,我们只需要知道级联通道 H \boldsymbol{H} H 来联合主动和被动波束形成优化,即优化 w \boldsymbol{w} w v \boldsymbol{v} v,使接收端接收信号功率最大化。因此,在信道估计阶段,我们的目标是根据接收到的测量值 { y ( t ) } t = 1 T \lbrace y(t)\rbrace _{t=1}^T {y(t)}t=1T 来估计 H \boldsymbol{H} H。请注意,为了便于信道估计,不同的预编码向量 { w ( t ) } \lbrace \boldsymbol{w}(t)\rbrace {w(t)} 在不同的时刻被采用,而相移向量 v \boldsymbol{v} v 在不同的时刻可以是时变的,也可以保持时不变。在不损失一般性的情况下,我们使用 v ( t ) \boldsymbol{v}(t) v(t) 来表示在第 t t t 个时间瞬间使用的相移矢量。我们还想澄清信道估计算法是在接收器(即用户)上实现的,不需要在IRS上执行任何操作或算法。

级联信道矩阵 H \boldsymbol{H} H 的维数为 M × N M ×N M×N。对于毫米波系统, N N N M M M 都可能很大,这使得信道估计成为一个具有挑战性的问题。幸运的是,真实世界的信道测量[12]、[13]已经表明,毫米波信道具有稀疏散射特性(sparse scattering characteristics),这可以用来大幅降低训练开销。

III. CHANNEL MODEL

根据[14],使用窄带几何信道(narrowband geometric channel)模型来表征BS-IRS信道 G \boldsymbol{G} G 和IRS-user信道 h r \boldsymbol{h}_r hr。具体来说,BS-IRS通道可以建模为
G = N M ρ ∑ l = 1 L ϱ l a r ( ϑ l , γ l ) a t H ( ϕ l ) (3) \boldsymbol{G}=\sqrt{\frac{N M}{\rho}} \sum_{l=1}^{L} \varrho_{l} \boldsymbol{a}_{r}\left(\vartheta_{l}, \gamma_{l}\right) \boldsymbol{a}_{t}^{H}\left(\phi_{l}\right)\tag{3} G=ρNM l=1Lϱlar(ϑl,γl)atH(ϕl)(3)

式中, ρ ρ ρ 为BS与IRS之间的平均路径损耗, L L L 为路径数, ϱ l \varrho_{l} ϱl 为与第 l l l 条路径相关的复增益, ϑ l \vartheta _{l} ϑl γ l \gamma _{l} γl) 为到达角(AoA), ϕ l \phi _l ϕl 为出发角(AoD), a r \boldsymbol{a}_{r} ar a t \boldsymbol{a}_{t} at 分别为接收和发射阵列响应向量(array response vectors)。假设IRS是 M x × M y M_x \times M_y Mx×My 均匀平面阵列(UPA)。我们有[15]

a r ( ϑ l , γ l ) = a x ( u ) ⊗ a y ( v ) \begin{align*} \boldsymbol{a}_r(\vartheta _l,\gamma _l)= \boldsymbol{a}_{x}(u) \otimes \boldsymbol{a}_{y}(v) \tag{4} \end{align*} ar(ϑl,γl)=ax(u)ay(v)(4)

其中 ⊗ \otimes 表示克罗内克积, u ≜ 2 π d cos ⁡ ( γ l ) / λ u\triangleq 2 \pi d \cos (\gamma _l) / \lambda u2πdcos(γl)/λ v ≜ 2 π d sin ⁡ ( γ l ) cos ⁡ ( ϑ l ) / λ v\triangleq 2 \pi d \sin (\gamma _l) \cos (\vartheta _l) / \lambda v2πdsin(γl)cos(ϑl)/λ d d d 表示天线间距, λ λ λ 是信号波长,而
a x ( u ) ≜ 1 M x [ 1 0 e j u 0 … 0 e j ( M x − 1 ) u ] T a y ( v ) ≜ 1 M y [ 1 0 e j v 0 … 0 e j ( M y − 1 ) v ] T \begin{align*} \boldsymbol{a}_{x}(u) \triangleq & \frac{1}{\sqrt{M_x}} [1\phantom{0}e^{ju}\phantom{0}\ldots \phantom{0} e^{j(M_x-1)u}]^T \\ \boldsymbol{a}_{y}(v) \triangleq & \frac{1}{\sqrt{M_y}} [1\phantom{0}e^{jv}\phantom{0}\ldots \phantom{0} e^{j(M_y-1)v}]^T \tag{5} \end{align*} ax(u)ay(v)Mx 1[10eju00ej(Mx1)u]TMy 1[10ejv00ej(My1)v]T(5)

由于毫米波通道的稀疏散射特性,路径 L L L 的数量相对于 G \boldsymbol{G} G 的维数较小,因此我们可以将 G \boldsymbol{G} G 表示为

G = ( F x ⊗ F y ) Σ F L H ≜ F P Σ F L H \begin{align*} \boldsymbol{G} = (\boldsymbol{F}_{x} \otimes \boldsymbol{F}_{y}) \boldsymbol{\Sigma } \boldsymbol{F}_L^H \triangleq \boldsymbol{F}_P\boldsymbol{\Sigma } \boldsymbol{F}_L^H \tag{6} \end{align*} G=(FxFy)ΣFLHFPΣFLH(6)

F L ∈ C N × N G \boldsymbol{F}_L \in \mathbb {C}^{N \times N_G} FLCN×NG 是一个overcomplete矩阵( N G ≥ N N_G\geq N NGN)并且它的每个列的形式为 a t ( ϕ l ) \boldsymbol{a}_{t}(\phi _l) at(ϕl) ϕ l \phi _l ϕlpre-discretized 网格选择, F x ∈ C M x × M G , x \boldsymbol{F}_x\in \mathbb {C}^{M_x \times M_{G,x}} FxCMx×MG,x F y ∈ C M y × M G , y \boldsymbol{F}_y\in \mathbb {C}^{M_y \times M_{G,y}} FyCMy×MG,y),同样是定义每个列的都有形式为 a x ( u ) \boldsymbol{a}_{x}(u) ax(u) a y ( v ) \boldsymbol{a}_{y}(v) ay(v))。 u u u ( v v v) 从 pre-discretized网格选择。 Σ ∈ C M G × N G \boldsymbol{\Sigma }\in \mathbb {C}^{M_G\times N_G} ΣCMG×NG 是一个稀疏矩阵, L L L 个非零项对应于信道路径增益 { ϱ l } \lbrace \varrho _l\rbrace {ϱl},其中 M G = M G , x × M G , y M_G=M_{G,x}\times M_{G,y} MG=MG,x×MG,y。这里为简单起见,我们假设真正的AoA和AoD参数在离散网格(discretized grid)上。在网格失配的存在下,由于网格失配[16]引起的 power leakage,非零条目的数量将变得更大。

IRS-user通道可以建模为
h r = M ε ∑ l = 1 L ′ α l a r ( ϑ l , γ l ) \begin{align*} \boldsymbol{h}_r =\sqrt{\frac{M}{\varepsilon }} \sum _{l=1}^{L^{\prime }} \alpha _l \boldsymbol{a}_r(\vartheta _l,\gamma _l) \tag{7} \end{align*} hr=εM l=1Lαlar(ϑl,γl)(7)

其中 ε ε ε 表示IRS与用户之间的平均路径损耗, α l α_l αl 表示与第 l l l 条路径相关的复增益, ϑ l \vartheta _{l} ϑl γ l \gamma _{l} γl)表示出发方位角(仰角)。由于有限散射特性(limited scattering characteristics),IRS-user信道可以写成

h r = F P α \begin{align*} \boldsymbol{h}_r &= \boldsymbol{F}_P \boldsymbol{\alpha } \tag{8} \end{align*} hr=FPα(8)

其中 α ∈ C M G \boldsymbol{\alpha }\in \mathbb {C}^{M_G} αCMG 是一个具有 L ′ L^\prime L 非零元素的稀疏向量。

IV. PROPOSED METHOD

我们现在讨论如何开发一种基于压缩感知的方法来估计级联信道h。让•表示“转置Khatri-Rao积”,我们可以将级联信道表示为

H = diag ( h r H ) G = ( a ) h r ∗ ∙ G = ( b ) ( F P ∗ α ∗ ) ∙ ( F P Σ F L H ) = ( c ) ( F P ∗ ∙ F P ) ( α ∗ ⊗ ( Σ F L H ) ) = ( d ) ( F P ∗ ∙ F P ) ( α ∗ ⊗ Σ ) ( 1 ⊗ F L H ) = ( e ) D ( α ∗ ⊗ Σ ) F L H \begin{align*} \boldsymbol{H} & =\text{diag} (\boldsymbol{h}_r^H) \boldsymbol{G} \stackrel{(a)}{=} \boldsymbol{h}_r^{\ast } \bullet \boldsymbol{G} \\ & \stackrel{(b)}{=} (\boldsymbol{F}_P^{\ast } \boldsymbol{\alpha }^{\ast }) \bullet (\boldsymbol{F}_P \boldsymbol{\Sigma } \boldsymbol{F}_L^H) \\ & \stackrel{(c)}{=} (\boldsymbol{F}_P^{\ast } \bullet \boldsymbol{F_P}) (\boldsymbol{\alpha }^{\ast } \otimes (\boldsymbol{\Sigma } \boldsymbol{F}_L^H)) \\ & \stackrel{(d)}{=} (\boldsymbol{F}_P^{\ast } \bullet \boldsymbol{F}_P) (\boldsymbol{\alpha }^{\ast } \otimes \boldsymbol{\Sigma }) (1 \otimes \boldsymbol{F}_L^H) \\ & \stackrel{(e)}{=}\boldsymbol{D} (\boldsymbol{\alpha }^{\ast } \otimes \boldsymbol{\Sigma }) \boldsymbol{F}_L^H \tag{9} \end{align*} H=diag(hrH)G=(a)hrG=(b)(FPα)(FPΣFLH)=(c)(FPFP)(α(ΣFLH))=(d)(FPFP)(αΣ)(1FLH)=(e)D(αΣ)FLH(9)

其中(a), ( ⋅ ) ∗ (·)^∗ () 表示复共轭,(b)来自(6)和(8),(c)来自Khatri-Rao积的性质(参见[17]中的(1.10.27)),(d)是借助Kronecker积的性质(参见[17]中的(1.10.4))得到的,我们定义 D ≜ F P ∗ ∙ F P \boldsymbol{D} \triangleq \boldsymbol{F}_P^{\ast } \bullet \boldsymbol{F}_P DFPFP 在(e)中。因为 α \boldsymbol{\alpha } α Σ \boldsymbol{\Sigma } Σ 都是稀疏的,它们的Kronecker积也是稀疏的。我们看到,经过一系列变换后,得到了级联通道 H \boldsymbol{H} H 的稀疏表示。

( a ) (a) (a)是根据transposed Khatri-Rao的定义得到的; ( c ) (c) (c)是根据
( A ∙ B ) ( C ⊗ D ) = ( A C ) ∙ ( B D ) (\mathbf{A} \bullet \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=(\mathbf{A C}) \bullet(\mathbf{B D}) (AB)(CD)=(AC)(BD)的性质得到。 ( d ) (d) (d)是借助Kronecker积的性质
( A ⊗ B ) ( C ⊗ D ) = ( A C ) ⊗ ( B D ) . (\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})=(\mathbf{A C}) \otimes(\mathbf{B D}) . (AB)(CD)=(AC)(BD).事实上,找不到的矩阵基本性质可以去wiki百科上搜索。

注意到矩阵 D \boldsymbol{D} D 由于转置的Khatri-Rao乘积运算而包含相当多的冗余列,可以进一步简化这个稀疏公式。具体来说,关于 D \boldsymbol{D} D 的冗余,我们有以下结果。

Proposition 1: The matrix D ∈ C M × M G 2 \boldsymbol{D}\in \mathbb {C}^{M \times M_G^2} DCM×MG2 only contains M G M_G MG distinct columns which are exactly the first M G M_G MG columns of D \boldsymbol{D} D, i.e.,

D u = D ( : , 1 : M G ) \begin{align*} \boldsymbol{D}_u =\boldsymbol{D}(:, 1:M_G) \tag{10} \end{align*} Du=D(:,1:MG)(10)

其中 D u \boldsymbol{D}_u Du 表示由 D \boldsymbol{D} D M G M_G MG 不同列构成的矩阵。

在这里插入图片描述

关于这个证明过程,我还是介绍一些东西,防止我自己待会忘记了自己的理解过程。 [ F P ] ( m x − 1 ) M y + m y , ( ι − 1 ) M G , y + ν = a m x , ι b m y , ν = e j 2 π ( ( m x − 1 ) θ ( ι ) + ( m y − 1 ) γ ( ν ) [\boldsymbol{F}_{P}]_{\left(m_{x}-1\right) M_{y}+m_{y},(\iota-1) M_{G, y}+\nu}=a_{m_x,\iota}b_{m_y,\nu}=e^{j 2 \pi\left(\left(m_{x}-1\right) \theta(\iota)+\left(m_{y}-1\right) \gamma(\nu)\right.} [FP](mx1)My+my,(ι1)MG,y+ν=amx,ιbmy,ν=ej2π((mx1)θ(ι)+(my1)γ(ν)
这里使用了关于Kronecker积的基本性质,相关资料可以在wiki百科上搜索
If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is the pm × qn block matrix: ( A ⊗ B ) i , j = a ⌈ i / p ⌉ , ⌈ j / q ⌉ b ( i − 1 ) % p + 1 , ( j − 1 ) % q + 1 (A \otimes B)_{i, j}=a_{\lceil i / p\rceil,\lceil j / q\rceil} b_{(i-1) \% p+1,(j-1) \% q+1} (AB)i,j=ai/p,j/qb(i1)%p+1,(j1)%q+1
因此我们可以得到 [ F x ] m x , ι = e j 2 π ( ( m x − 1 ) θ ( ι ) ) = e j 2 π ( m x − 1 ) ( − 1 2 + ι − 1 M G , x ) \begin{align*} [\boldsymbol{F}_{x}]_{m_x,\iota} & = e^{j 2 \pi\left(\left(m_{x}-1\right) \theta(\iota)\right)}\\ &=e^{j 2 \pi\left(m_{x}-1\right) \left(-\frac{1}{2}+\frac{\iota-1}{M_{G, x}}\right)} \end{align*} [Fx]mx,ι=ej2π((mx1)θ(ι))=ej2π(mx1)(21+MG,xι1) 根据之前 u ≜ 2 π d cos ⁡ ( γ l ) / λ u\triangleq 2 \pi d \cos (\gamma _l) / \lambda u2πdcos(γl)/λ,我们可以知道实际上这个码表是定义了 d = 1 / 2 λ d=1/2\lambda d=1/2λ,符合一般的情况。

此外,证明中的 D u , v \boldsymbol{D}_{u, v} Du,v ( ( m x − 1 ) M y + m y , ( p − 1 ) M G , y + q ) \left(\left(m_{x}-1\right) M_{y}+m_{y},(p-1) M_{G, y}+q\right) ((mx1)My+my,(p1)MG,y+q) 元素根据 transposed Khatri-Rao 的定义,是由 F P ∗ \boldsymbol{F}_P^{\ast } FP 中的 [ ( m x − 1 ) M y + m y , ( u − 1 ) M G , y + v ] [\left(m_{x}-1\right) M_{y}+m_{y},(u-1) M_{G, y}+v] [(mx1)My+my,(u1)MG,y+v] 元素乘 F P \boldsymbol{F}_P FP 中的 ( ( m x − 1 ) M y + m y , ( p − 1 ) M G , y + q ) \left(\left(m_{x}-1\right) M_{y}+m_{y},(p-1) M_{G, y}+q\right) ((mx1)My+my,(p1)MG,y+q) 元素。

基于这个结果,级联通道 H \boldsymbol{H} H 可以进一步表示为

H = D ( α ∗ ⊗ Σ ) F L H = D u Λ F L H \begin{align*} \boldsymbol{H} = \boldsymbol{D} (\boldsymbol{\alpha }^{\ast } \otimes \boldsymbol{\Sigma }) \boldsymbol{F}_L^H = \boldsymbol{D}_u \boldsymbol{\Lambda } \boldsymbol{F}_L^H \tag{11} \end{align*} H=D(αΣ)FLH=DuΛFLH(11)

其中 Λ ∈ C M G × N G \boldsymbol{\Lambda } \in \mathbb {C}^{ M_G \times N_G} ΛCMG×NG ( α ∗ ⊗ Σ ) ≜ J (\boldsymbol{\alpha }^{\ast } \otimes \boldsymbol{\Sigma }) \triangleq \boldsymbol{J} (αΣ)J 的合并版本,其每一行是 J \boldsymbol{J} J 中行一个子集的叠加,即 Λ ( i , : ) = ∑ n ∈ S i J ( n , : ) \boldsymbol{\Lambda }(i,:) = \sum _{n \in \mathcal {S}_i} \boldsymbol{J} (n,:) Λ(i,:)=nSiJ(n,:),其中 Λ ( i , : ) \boldsymbol{\Lambda }(i,:) Λ(i,:) 表示 Λ \boldsymbol{\Lambda } Λ 的第 i i i 行, S i \mathcal {S}_i Si 表示与 D \boldsymbol{D} D 中与 D \boldsymbol{D} D 的第 i i i 列相同的那些列相关联的索引集合。显然, Λ \boldsymbol{\Lambda } Λ 中最多有 L × L ′ L\times L^{\prime } L×L 非零项。

这里的文字解释比较少,可能会比较难懂,主要因为列是有重复的,因此我们可以将同样的列对应的行累加起来构成 Λ \boldsymbol{\Lambda } Λ,且 Λ ( i , : ) = ∑ n ∈ S i J ( n , : ) \boldsymbol{\Lambda }(i,:) = \sum _{n \in \mathcal {S}_i} \boldsymbol{J} (n,:) Λ(i,:)=nSiJ(n,:) [ β 1 , β 2 , ⋯   , β M G , ⋯   , β M G 2 ] [ α 1 ⋮ α M G 2 ] = β 1 α 1 + β 2 α 2 + ⋯ + β M G 2 α M G 2 \left[ \beta_1,\beta_2,\cdots,\beta_{M_G},\cdots,\beta_{M_G^2}\right]\left[\begin{array}{c}\alpha_1 \\\vdots \\ \alpha_{M_G^2}\end{array}\right]=\beta_1\alpha_1+\beta_2\alpha_2+\cdots+\beta_{M_G^2}\alpha_{M_G^2} [β1,β2,,βMG,,βMG2] α1αMG2 =β1α1+β2α2++βMG2αMG2

假设导频信号 s ( t ) = 1 , ∀ t s(t)=1,\forall t s(t)=1,t,在(2)中接收到的信号 y ( t ) y(t) y(t) 可以写成

y ( t ) = v H ( t ) H w ( t ) s ( t ) + ϵ ( t ) = ( a ) ( w T ( t ) ⊗ v H ( t ) ) vec ( H ) + ϵ ( t ) = ( b ) ( w T ( t ) ⊗ v H ( t ) ) ( F L ∗ ⊗ D u ) vec ( Λ ) + ϵ ( t ) = ( c ) ( w T ( t ) ⊗ v H ( t ) ) F ~ x + ϵ ( t ) \begin{align*} y(t) = & \boldsymbol{v}^H(t) \boldsymbol{H} \boldsymbol{w}(t) s(t) + \epsilon (t) \\ \stackrel{(a)}{=} & \left(\boldsymbol{w}^T(t)\otimes \boldsymbol{v}^H(t) \right) \text{vec} (\boldsymbol{H}) +\epsilon (t) \\ \stackrel{(b)}{=}& \left(\boldsymbol{w}^T(t)\otimes \boldsymbol{v}^H(t) \right) \left(\boldsymbol{F}_L^{\ast } \otimes \boldsymbol{D}_u\right) \text{vec}(\boldsymbol{\Lambda })+\epsilon (t) \\ \stackrel{(c)}{=}& \left(\boldsymbol{w}^T(t)\otimes \boldsymbol{v}^H(t) \right) \tilde{\boldsymbol{F}} \boldsymbol{x} +\epsilon (t) \tag{12} \end{align*} y(t)==(a)=(b)=(c)vH(t)Hw(t)s(t)+ϵ(t)(wT(t)vH(t))vec(H)+ϵ(t)(wT(t)vH(t))(FLDu)vec(Λ)+ϵ(t)(wT(t)vH(t))F~x+ϵ(t)(12)

其中(a)和(b)由Kronecker积的性质推导而来,在(c)中我们定义 F ~ ≜ F L ∗ ⊗ D u \tilde{\boldsymbol{F}}\triangleq \boldsymbol{F}_L^{\ast } \otimes \boldsymbol{D}_u F~FLDu x ≜  vec ( Λ ) \boldsymbol{x} \triangleq \text{ vec} (\boldsymbol{\Lambda }) x vec(Λ)。堆叠在不同时间瞬间收集的测量 y ≜ [ y ( 1 ) 0 … 0 y ( T ) ] T \boldsymbol{y} \triangleq [ y(1) \phantom{0} \ldots \phantom{0} y(T)]^T y[y(1)00y(T)]T,我们到达

y = Φ x + ϵ \begin{align*} \boldsymbol{y} = \boldsymbol{\Phi } \boldsymbol{x} + \boldsymbol{\epsilon } \tag{13} \end{align*} y=Φx+ϵ(13)

其中 Φ ≜ W v F ~ \boldsymbol{\Phi }\triangleq \boldsymbol{W}_v\tilde{\boldsymbol{F}} ΦWvF~ 并且
W v ≜ [ w T ( 1 ) ⊗ v H ( 1 ) ⋮ w T ( T ) ⊗ v H ( T ) ] \begin{align*} \boldsymbol{W}_v\triangleq \left[ \begin{matrix}\boldsymbol{w}^T(1)\otimes \boldsymbol{v}^H(1) \\ \vdots \\ \boldsymbol{w}^T(T)\otimes \boldsymbol{v}^H(T) \end{matrix} \right] \end{align*} Wv wT(1)vH(1)wT(T)vH(T)
y = [ w T ( 1 ) ⊗ v H ( 1 ) ⋮ w T ( T ) ⊗ v H ( T ) ] F ~ x + [ ϵ ( 1 ) ⋮ ϵ ( T ) ] ≜ Φ x + ϵ (14) \begin{aligned} \boldsymbol{y} & =\left[\begin{array}{c} \boldsymbol{w}^{T}(1) \otimes \boldsymbol{v}^{H}(1) \\ \vdots \\ \boldsymbol{w}^{T}(T) \otimes \boldsymbol{v}^{H}(T) \end{array}\right] \tilde{\boldsymbol{F}} \boldsymbol{x}+\left[\begin{array}{c} \epsilon(1) \\ \vdots \\ \epsilon(T) \end{array}\right] \\ & \triangleq \boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{\epsilon} \end{aligned}\tag{14} y= wT(1)vH(1)wT(T)vH(T) F~x+ ϵ(1)ϵ(T) Φx+ϵ(14)

到目前为止,我们已经将信道估计问题转化为稀疏信号恢复问题,可以利用正交匹配追踪(orthogonal matching pursuit ,OMP)[18]等许多经典压缩感知算法对稀疏信号 x \boldsymbol{x} x 进行估计,在 x \boldsymbol{x} x 恢复后,通过(11)可以相应地得到级联信道 H \boldsymbol{H} H

在下文中,我们分析了我们提出的基于压缩感知的方法的样本复杂度。根据压缩感知理论,对于一个 underdetermined 线性方程组 y = A x \boldsymbol{y}=\boldsymbol{Ax} y=Ax,成功恢复 x \boldsymbol{x} x 所需的测量次数为 O ( k log ⁡ n ) \mathcal {O}(k\log n) O(klogn) 阶,其中 n n n x x x 的维数, k k k 表示 x x x 中非零元素的个数。对于稀疏信号恢复问题(13),我们有 n = M G N G n=M_G N_G n=MGNG k ≤ L L ′ k\leq L L^{\prime } kLL。因此,我们提出的方法的样本复杂度为 O ( L L ′ log ⁡ ( M G N G ) ) \mathcal {O}(L L^{\prime } \log (M_G N_G)) O(LLlog(MGNG))。由于毫米波通道的稀疏散射特性, L L ′ L L^{\prime } LL M N MN MN 小得多。因此,可以实现大量的训练开销减少。

  • 15
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems This book discusses the design and implementation aspects of ultra-low power biosignal acquisition platforms that exploit analog-assisted and algorithmic approaches for power savings.The authors describe an approach referred to as “analog-and-algorithm-assisted” signal processing.This enables significant power consumption reductions by implementing low power biosignal acquisition systems, leveraging analog preprocessing and algorithmic approaches to reduce the data rate very early in the signal processing chain.They demonstrate savings for wearable sensor networks (WSN) and body area networks (BAN), in the sensors’ stimulation power consumption, as well in the power consumption of the digital signal processing and the radio link. Two specific implementations, an adaptive sampling electrocardiogram (ECG) acquisition and a compressive sampling (CS) photoplethysmogram (PPG) acquisition system, are demonstrated. First book to present the so called, “analog-and-algorithm-assisted” approaches for ultra-low power biosignal acquisition and processing platforms; Covers the recent trend of “beyond Nyquist rate” signal acquisition and processing in detail, including adaptive sampling and compressive sampling paradigms; Includes chapters on compressed domain feature extraction, as well as acquisition of photoplethysmogram, an emerging optical sensing modality, including compressive sampling based PPG readout with embedded feature extraction; Discusses emerging trends in sensor fusion for improving the signal integrity, as well as lowering the power consumption of biosignal acquisition systems. 2019_Book_Analog-and-Algorithm-AssistedU.pdf (6.77 MB, 下载次数: 147 )

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WHS-_-2022

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值