详细解释Informer模型的各部分

详细解释Informer模型的各部分

informer论文中的模型图

1. 输入时间序列 ( T )

  • 时间戳 ( t )
    • 代表每个数据点的时间信息。例如,时间戳可能是具体的日期和时间,如“2024-06-01 00:00”。
  • 标量 ( D_x )
    • 代表时间序列的具体值,例如温度、湿度等。在我们的例子中,标量可能是“20.5℃”这样的温度值。

2. Embedding 层

  • 目的:将输入的时间序列数据转换成高维特征向量,以便后续处理。
  • 步骤
    1. 时间戳嵌入
      • 使用一维卷积层(Conv1d)将时间戳转换成高维向量。
      • 例如,将时间戳“2024-06-01 00:00”通过卷积操作得到一个长度为d的向量。
    2. 标量嵌入
      • 同样使用一维卷积层(Conv1d)将标量数据转换成高维向量。
      • 例如,将温度“20.5℃”通过卷积操作得到一个长度为d的向量。
    3. 特征融合
      • 将时间戳嵌入向量和标量嵌入向量相加,得到综合的特征表示。

3. Attention Block 1

  • 目的:捕捉时间序列中的长短期依赖关系。
  • 步骤
    1. 多头自注意力(Multi-Head Self-Attention)
      • 将嵌入的特征向量通过多头自注意力机制处理。每个头捕捉不同的依赖关系。
      • 例如,一个注意力头可能关注过去几个小时的温度变化,另一个注意力头可能关注一天内的温度变化。
    2. 位置编码(Positional Encoding)
      • 为了保留序列的位置信息,可能会加入位置编码。

4. MaxPooling 1d

  • 目的:通过降采样减少特征图的尺寸,保留最重要的特征。
  • 步骤
    1. 最大池化
      • 对注意力块输出的特征进行最大池化操作,通常每两个值取一个最大值。
      • 例如,如果输入特征为[1, 3, 2, 4],最大池化后的输出为[3, 4]。

5. Attention Block 2 和 Attention Block 3

  • 目的:进一步提取特征,捕捉更深层次的依赖关系。
  • 步骤
    1. 重复多头自注意力机制
      • 每个Attention Block都会再次使用多头自注意力机制处理特征。
      • 捕捉更多层次的时间序列依赖关系。
    2. 重复最大池化
      • 每个Attention Block之后都会进行最大池化操作,进一步降采样。

6. 最终特征图(Feature Map)

  • 目的:得到最终的特征表示,用于后续的预测任务。
  • 步骤
    1. 输出特征图
      • 通过多次Attention Block和Pooling操作,最终得到的特征图是一个压缩但具有代表性的高维向量。
    2. 预测任务
      • 这个特征图可以输入到预测模块,例如全连接层(Fully Connected Layer)进行时间序列预测。
      • 在我们的温度预测例子中,最终的特征图用于预测未来一周的温度值。

示例说明

假设我们有一个气象站的数据集,记录了每小时的温度(标量数据)和时间戳。我们希望使用Informer模型来预测未来一周的温度。

  1. 输入数据准备

    • 输入数据 ( T ) 包含时间戳和温度值。
    • 示例数据可能为:[(2024-06-01 00:00, 20.5), (2024-06-01 01:00, 21.0), ...]
  2. Embedding 层处理

    • 时间戳通过Conv1d层转换成高维向量,例如[0.1, 0.3, 0.5, ..., 0.2]
    • 温度值通过另一个Conv1d层转换成高维向量,例如[0.5, 0.6, 0.7, ..., 0.4]
    • 两者相加,得到综合的特征表示。
  3. Attention Block 处理

    • 多头注意力机制捕获温度时间序列中的依赖关系。
    • 例如,某个注意力头可能发现凌晨2点的温度与上午8点的温度有很强的相关性。
  4. MaxPooling 1d 处理

    • 最大池化层对特征进行降采样。
    • 保留最重要的特征,减少计算量。
  5. 重复Attention Block 和 Pooling

    • 进一步提取特征,捕获更深层次的依赖关系。
    • 多次降采样使得特征图逐渐变小但更具代表性。
  6. 最终特征图

    • 最终得到的特征图用于预测未来一周的温度。
    • 预测结果可能为未来一周每天的最高温度和最低温度。

通过这些步骤,Informer模型可以有效地处理时间序列数据,捕捉复杂的时间依赖关系,从而进行准确的时间序列预测。

  • 25
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer模型Informer模型都是当前在NLP和时间序列预测领域非常流行的模型。下面是它们的详细介绍: Transformer模型: Transformer模型是一种基于自注意力机制的神经网络模型,由Google在2017年提出,用于解决NLP中的序列到序列(seq2seq)问题。相比于传统的RNN和LSTM等模型,Transformer模型不需要考虑序列的顺序,可以并行计算,因此训练速度更快,效果更好。Transformer模型主要由编码器和解码器两部分组成,其中编码器和解码器都由多个注意力和前馈神经网络组成。在编码器中,每个注意力都会对输入序列进行自注意力计算,得到每个位置的表示;在解码器中,每个注意力会对编码器的输出和解码器的输入进行注意力计算,得到每个位置的表示。Transformer模型在NLP中的应用非常广泛,如机器翻译、文本分类、文本生成等。 Informer模型Informer模型是一种基于Transformer模型的时间序列预测模型,由腾讯AI Lab在2020年提出。相比于传统的时间序列预测模型,如ARIMA、LSTM等,Informer模型可以处理更长的时间序列,且具有更好的预测效果。Informer模型主要由编码器、解码器和逆向解码器三部分组成,其中编码器和解码器都由多个ProbSparse Self-Attention和前馈神经网络组成,逆向解码器则由多个ProbSparse Self-Attention和反卷积组成。Informer模型中的ProbSparse Self-Attention是一种新的注意力,可以减少模型参数的同时提高模型的效果。Informer模型在时间序列预测领域中的应用非常广泛,如交通流量预测、电力负荷预测等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值