详细解释Informer模型的各部分

详细解释Informer模型的各部分

informer论文中的模型图

1. 输入时间序列 ( T )

  • 时间戳 ( t )
    • 代表每个数据点的时间信息。例如,时间戳可能是具体的日期和时间,如“2024-06-01 00:00”。
  • 标量 ( D_x )
    • 代表时间序列的具体值,例如温度、湿度等。在我们的例子中,标量可能是“20.5℃”这样的温度值。

2. Embedding 层

  • 目的:将输入的时间序列数据转换成高维特征向量,以便后续处理。
  • 步骤
    1. 时间戳嵌入
      • 使用一维卷积层(Conv1d)将时间戳转换成高维向量。
      • 例如,将时间戳“2024-06-01 00:00”通过卷积操作得到一个长度为d的向量。
    2. 标量嵌入
      • 同样使用一维卷积层(Conv1d)将标量数据转换成高维向量。
      • 例如,将温度“20.5℃”通过卷积操作得到一个长度为d的向量。
    3. 特征融合&#x
Transformer模型Informer模型都是当前在NLP和时间序列预测领域非常流行的模型。下面是它们的详细介绍: Transformer模型: Transformer模型是一种基于自注意力机制的神经网络模型,由Google在2017年提出,用于解决NLP中的序列到序列(seq2seq)问题。相比于传统的RNN和LSTM等模型,Transformer模型不需要考虑序列的顺序,可以并行计算,因此训练速度更快,效果更好。Transformer模型主要由编码器和解码器两部分组成,其中编码器和解码器都由多个注意力层和前馈神经网络层组成。在编码器中,每个注意力层都会对输入序列进行自注意力计算,得到每个位置的表示;在解码器中,每个注意力层会对编码器的输出和解码器的输入进行注意力计算,得到每个位置的表示。Transformer模型在NLP中的应用非常广泛,如机器翻译、文本分类、文本生成等。 Informer模型Informer模型是一种基于Transformer模型的时间序列预测模型,由腾讯AI Lab在2020年提出。相比于传统的时间序列预测模型,如ARIMA、LSTM等,Informer模型可以处理更长的时间序列,且具有更好的预测效果。Informer模型主要由编码器、解码器和逆向解码器三部分组成,其中编码器和解码器都由多个ProbSparse Self-Attention层和前馈神经网络层组成,逆向解码器则由多个ProbSparse Self-Attention层和反卷积层组成。Informer模型中的ProbSparse Self-Attention层是一种新的注意力层,可以减少模型参数的同时提高模型的效果。Informer模型在时间序列预测领域中的应用非常广泛,如交通流量预测、电力负荷预测等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值