在扩散模型领域,有几篇论文被认为是经典和奠基性的。以下是一些最具影响力的论文:
-
DDPM (Denoising Diffusion Probabilistic Models)
- 标题: Denoising Diffusion Probabilistic Models
- 作者: Jonathan Ho, Ajay Jain, Pieter Abbeel
- 发表时间: 2020
- 摘要: 这篇论文提出了一种新的生成模型,称为去噪扩散概率模型(DDPM),并展示了它在图像生成任务中的性能,特别是在高质量图像生成方面的优越性。
- 链接: arXiv
-
Score-Based Generative Modeling
- 标题: Score-Based Generative Modeling through Stochastic Differential Equations
- 作者: Yang Song, Stefano Ermon
- 发表时间: 2021
- 摘要: 这篇论文介绍了一种基于分数的生成模型,通过随机微分方程(SDE)来进行训练和采样。该方法在多个生成任务中表现出色,并且理论上与DDPM有很强的关联。
- 链接: arXiv
-
Improved Denoising Diffusion Probabilistic Models
- 标题: Improved Denoising Diffusion Probabilistic Models
- 作者: Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, David J. Fleet
- 发表时间: 2021
- 摘要: 这篇论文对DDPM进行了改进,提出了若干技术来提高模型的采样效率和生成图像质量,使得扩散模型在生成任务中的应用更加实际和高效。
- 链接: arXiv
-
Diffusion Models Beat GANs on Image Synthesis
- 标题: Diffusion Models Beat GANs on Image Synthesis
- 作者: Prafulla Dhariwal, Alexander Nichol
- 发表时间: 2021
- 摘要: 这篇论文比较了扩散模型和生成对抗网络(GAN)在图像生成任务中的表现,发现扩散模型在多个基准测试中优于GAN,进一步证明了其在生成质量和稳定性方面的优势。
- 链接: arXiv
这些论文不仅对扩散模型的发展做出了重要贡献,还为该领域的后续研究提供了坚实的理论基础和技术路线。如果你有更多具体的研究兴趣或问题,可以详细阅读这些论文。