为了进一步解释生成对抗网络(GAN)中生成器和判别器的对抗训练过程及其目标。以下是逐句详细解释:
生成器和判别器的目标
-
在训练过程中,生成器和判别器的目标是相矛盾的
- 解释:GAN 的训练过程本质上是一个博弈过程,生成器和判别器有着不同且相互对立的目标。
-
这种矛盾可以体现在判别器的判断准确性上
- 解释:生成器和判别器之间的对抗关系反映在判别器的准确性上,生成器试图降低判别器的准确性,而判别器试图提高自己的准确性。
-
生成器的目标是生成尽量真实的数据
- 解释:生成器的任务是根据随机噪声生成逼真的假数据,使其尽可能地接近真实数据,从而欺骗判别器。
-
让判别器判断不出来(让判别器上当)
- 解释:生成器希望生成的数据能够成功欺骗判别器,使判别器认为这些假数据是真实的。
-
判别器的目标是尽量判断出真伪
- 解释:判别器的任务是区分真实数据和生成的数据,它需要尽可能准确地识别出哪些数据是真实的,哪些是生成的。
-
判别器的学习目标是让自己的判断准确性越来越高
- 解释<