深度学习 pytorch手写数字识别 MNIST数据集 解析+详细注释


文件结构
①存放训练之后导出的模型;
②存放数据集;

在这里插入图片描述

1 模型构建

神经网络由对数据进行操作的层/模块(layers/modules)组成。torch.nn提供构建网络的所有blocks,
在PyTorch中的每个modules都继承了nn.Module,可以构建各种复杂的网络结构。
通过nn.Module定义神经网络,使用init初始化,对数据的所有操作都在forward()中实现

import torch 
import torch.nn as nn

# 1 创建网络模型 model.py

# 卷积神经网络(两个卷积层)

class ConvNet(nn.Module): # nn,neural network
    def __init__(self, num_classes=10): #0~9种类别
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), #输出尺寸:(n+2p-f)/s +1 = (28+4-5)/1 + 1 = 28,输入28输出还是28 ,1*28*28
            nn.BatchNorm2d(16), # 输出通道16,16*28*28
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)) #最大池化,做下采样,f=2,s=2相当于图像减半 #图片变模糊,保留原图片的特征,让训练参数减少。 #16*14*14
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), #输入16通道,输出32通道
            nn.BatchNorm2d(32), #32*14*14
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2)) #32*7*7
        self.fc = nn.Linear(7*7*32, num_classes) #全连接层展开
        
    def forward(self, x): #前向传播
        out = self.layer1(x) #in bx1x28x28 out bx16x14x14
        out = self.layer2(out)#out bx32x7x7
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)#bx10
        return out

2 训练 train.py

import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from model import ConvNet #加载网络模型

# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') #如果有cuda 就用GPU,没有就用CPU

# Hyper parameters 超参数
num_epochs = 5 #训练5轮
num_classes = 10 #类别10,数字0~9
batch_size = 100 #一次送入100个数据
learning_rate = 0.001 #梯度下降步长

# MNIST dataset  #数据集与加载torchvision中已经集成了,直接调用
train_dataset = torchvision.datasets.MNIST(root='./data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='./data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)#训练时,数据打乱

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False) #测试时,不打乱
# 模型初始化
model = ConvNet(num_classes).to(device)

# Loss and optimizer 损失和优化器
criterion = nn.CrossEntropyLoss() #交叉熵
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device) #images模型输入
        labels = labels.to(device) #labels用于计算loss
        
        # 前向传播,即网络如何根据输入得到输出的
        outputs = model(images)
        # loss计算
        loss = criterion(outputs, labels)
        
        # 反向传播与优化,反向传播算法的核心是代价函数对网络中参数(各层的权重和偏置)的偏导表达式和。
        optimizer.zero_grad() #梯度清零:重置模型参数的梯度。默认是累加,为了防止重复计数,在每次迭代时显式地将它们归零。
        loss.backward()#反向传播计算梯度:计算当前张量w.r.t图叶的梯度。
        optimizer.step()#参数更新:根据上面计算的梯度,调整参数
        
        if (i+1) % 100 == 0: #每个batch打印以此结果
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 模型测试
model.eval()  
with torch.no_grad(): #禁用梯度计算:当我们训练了模型,只是想跑一下前向测试我们的数据
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1) #找出类别里最大的预测结果
        total += labels.size(0) #统计测试总数
        correct += (predicted == labels).sum().item() #统计预测正确总数

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# 模型导出
#PyTorch模型将学习到的参数存储在一个内部状态字典中,称为state_dict。使用torch.save()保存
torch.save(model.state_dict(), './checkpoints/model.ckpt')

在中端输入python train.py 或者运行按钮

在这里插入图片描述

3 测试 eval.py

文件默认2828的图片,
测试中用了两张不一样大小的图片,如果不是28
28,会resize为28*28,再识别。
在这里插入图片描述

import torch 
import torch.nn as nn

# 创建网络模型

import torch 
import torch.nn as nn
import numpy as np
import cv2
from model import ConvNet

#模型加载
model=ConvNet(10) #类别,数字0~9,10类
state_dict=torch.load('./checkpoints/model.ckpt')
model.load_state_dict(state_dict)
model.eval() #有BN和Dropout,测试时要加model.eval()with torch.no_grad():
    #数据加载
    image=cv2.imread('2.png',0) #读入灰度图,WH两个维度 28*28
    print(image.shape)
    if(image.shape != (28,28)): #如果不是28*28,resize为28*28
        image = cv2.resize(image,(28,28))
    image = np.expand_dims(image, 0) # 增加1个维度
    image = np.expand_dims(image, 0) # 再增加一个维度
    image=1.0-image.astype(np.float32)/255.0 #归一化到01,,因为测试图片是白底黑字,但训练集是黑底白字,做一个反色1.0-image
    print(image.shape) #1*1*28*28,batch,通道数,H,W
    image_t=torch.from_numpy(image) #转成Torch的张量
    outputs = model(image_t)
    _, predicted = torch.max(outputs.data, 1) # 输出0~9模型中分值最高的
    print(predicted.numpy())
    print("test end")

在中端输入python eval.py 或者运行按钮;
分别测试数字4,2
在这里插入图片描述
在这里插入图片描述

4 工程文件、数据集、源码下载

手写数字识别 MNIST数据集 解析+详细注释

  • 4
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: PyTorch是一种用于深度学习的开源框架,可用于手写数字识别MNIST数据集MNIST数据集包含手写数字的图像和标签,可用于训练和评估深度学习模型。通过使用PyTorchMNIST数据集,可以构建和训练一个用于识别手写数字的模型。 ### 回答2: ### 回答3: PyTorch是一个非常流行的开源机器学习框架,它支持使用Python编程语言来构建深度学习模型。在本问题中,我们要使用PyTorch来实现手写数字识别MNISTMNIST是一个非常著名的手写数字数据集,它包含了60000个训练样本和10000个测试样本。每张图片的大小是28x28像素,每个像素的值在0~255之间,表示灰度值。手写数字识别MNIST任务的目标是训练一个模型,输入一张黑白图片,输出它表示的数字。 下面是使用PyTorch实现MNIST的大致流程: 1. 下载MNIST数据集,使用PyTorch内置的dataset和dataloader来加载数据。 2. 构建一个神经网络模型,可以使用PyTorch提供的nn.Module和nn.Sequential搭建模型。在本例中,我们可以构建一个简单的卷积神经网络模型。 3. 定义损失函数,一般使用交叉熵损失函数。 4. 定义优化器,如Adam或SGD等。 5. 进行训练,即在数据集上反复迭代地进行前向传播和反向传播过程,更新模型的参数,使得损失函数最小化。可以使用PyTorch提供的自动微分机制来进行反向传播。 6. 在测试集上测试模型的精度,可以使用PyTorch提供的测试函数来对模型进行评估。 下面给出一个简单的示例代码框架: ``` # 导入PyTorch和相关库 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据转换器 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='data', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_dataset = datasets.MNIST(root='data', train=False, transform=transform, download=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True) # 构建神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(1600, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 定义模型、损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(10): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 测试模型 model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) ``` 这段代码定义了一个包含两个卷积层和两个全连接层的卷积神经网络模型,使用交叉熵损失函数和Adam优化器来进行训练。在每个训练周期中,程序会遍历整个训练集,进行参数更新;在训练结束后,程序会在测试集上进行测试,计算模型的精度。 总的来说,使用PyTorch实现手写数字识别MNIST是一个非常典型的深度学习问题,这个例子也展示了如何使用PyTorch进行模型构建、数据处理和训练测试。通过这个例子,我们可以更好地了解深度学习的基本流程和PyTorch的使用方法,也可以为我们后续的深度学习项目提供一些参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R-G-B

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值