dtu数据集 测试集介绍

本文介绍了DTU数据集的测试集,每个场景的scan目录包含相机参数、49张图片以及邻域对信息。重点解析了pair.txt文件的内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 scan下三个文件

在这里插入图片描述
打开dtu测试集查看到有22 组测试集,
每个场景scan下有三个文件
在这里插入图片描述进入到scan1文件下下,可以看到scan下有三个文件,分别是
相机参数、
每个场景的49个图片、
邻域对
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

<think>好的,我现在需要帮助用户解决如何下载DTU数据集的问题。首先,根据用户提供的引用内容,引用[1]提到了一个名为“dtu-training数据集 百度网盘19G”的资源,项目地址是https://gitcode.com/Open-source-documentation-tutorial/28c91。用户可能需要从这里下载。 接下来,引用[2]和[3]讨论了MVSNet和PatchMatchNet使用的不同版本的DTU数据集,特别是训练集和测试集的差异。用户可能需要根据他们具体的研究方向选择合适的数据集版本。例如,MVSNet的数据集较小(19.2GB),而PatchMatchNet的更大(76.3GB),分辨率也不同。 用户的问题是如何下载DTU数据集。我需要整理出清晰的步骤,包括不同版本的下载链接和注意事项。首先,应该检查官方渠道,比如官方网站或GitHub仓库。引用[1]中的项目地址可能是一个资源,但需要确认是否可靠。另外,百度网盘的链接可能在国内更常用,但需要注意是否需要提取码。 还需要提醒用户注意不同版本的数据集差异,确保他们下载的版本符合他们的项目需求。例如,如果用户要进行三维重建或深度估计,可能需要高分辨率的版本,如PatchMatchNet的数据集。此外,测试集的结构和数量也需要考虑,引用[3]提到测试集有22组,每个场景有49张图片,这可能影响实验设置。 最后,可能需要建议用户查阅相关论文或项目的文档,以确保数据集的正确使用。如果有官方下载方式,优先推荐官方渠道,否则提供备选方案,如百度网盘链接,并提醒注意数据的完整性和可能的访问限制。</think>关于DTU数据集的下载,以下是整理后的信息及步骤: --- ### **DTU数据集下载指南** #### 1. **数据集版本选择** 根据引用[2],需注意不同算法(如MVSNet和PatchMatchNet)使用的DTU数据集版本不同: - **MVSNet版本** - 训练集:19.2GB,深度图分辨率较低($160 \times 128$),119组数据 - 测试集:22组场景,每场景49张图像,包含相机参数和邻域对文件[^3] - **PatchMatchNet版本** - 训练集:76.3GB,深度图分辨率高($1600 \times 1200$),128组数据 - 测试集:数据加载方式不同(使用最小/最大深度而非间隔)[^2] #### 2. **下载途径** - **途径1:GitCode仓库(推荐)** 引用[1]提供了百度网盘下载链接,包含19G训练集: - **项目地址**:https://gitcode.com/Open-source-documentation-tutorial/28c91 - **文件名称**:`dtu-training数据集 百度网盘19G` - **适用场景**:适用于MVSNet、Fast-MVSNet等模型的训练[^1] - **途径2:官方渠道(需申请)** DTU数据集原始发布方为丹麦科技大学,需通过官网申请: - 访问[DTU官网](http://roboimagedata2.compute.dtu.dk/)提交申请表格 - 注意:可能需要提供研究用途证明[^2] - **途径3:学术社区资源** 部分论文作者会公开预处理后的数据,例如: - PatchMatchNet的高分辨率数据集可通过其GitHub仓库的链接获取(需检查仓库说明) #### 3. **下载注意事项** - **文件校验**:下载后核对文件大小,避免传输错误(如MVSNet训练集应为~19GB) - **目录结构**:测试集目录包含`cams`(相机参数)、`images`(图像)、`pair.txt`(邻域对) - **兼容性**:若用于特定算法(如PatchMatchNet),需确认数据加载逻辑与模型匹配[^2] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R-G-B

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值