网络模型的保存和读取

23 篇文章 4 订阅
14 篇文章 1 订阅

先新建一个网络模型:

import torchvision

vgg16 = torchvision.models.vgg16(pretrained=False)

pretrained=False意思是该网络模型是初始没有经过训练的。

方式1:

保存数据:

import torch
    
torch.save(vgg16, 'vgg16_method1.pth')

这种方式既保存了网络结构也保存了网络中的参数

加载数据:

import torch

model = torch.load('vgg16_method1.pth')

可以print(model),查看信息:

VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)

...

正是vgg16的网络结构,通过debug也可以知道二者的网络参数是一样的。

注意:

方式1在load的时候,本.py文件内应该存在该网络,可以通过import导入包含该网络定义的文件,或者可以class定义一个所对应的文件结构。

方式2:

保存数据:

torch.save(vgg16.state_dict(), 'vgg16_method2.pth')

获取vgg16的参数(状态),并转换为字典形式,只保存参数,不保存结构。

加载数据并打印:

model = torch.load('vgg16_method2.pth')
print(model)

输出:

OrderedDict([('features.0.weight', tensor([[[[ 4.4961e-02,  1.9124e-01,  2.4614e-02],
          [-1.7670e-02, -5.0754e-02, -8.5891e-02],
          [-1.0293e-01, -5.0360e-02, -7.7070e-02]],

...

输出为字典形式的网络参数,并没有网络结构。若要还原网络,则要创建一个和原模型结构一样的网络,再进行加载:

vgg16 = torchvision.models.vgg16()
vgg16.load_state_dict(torch.load('vgg16_method2.pth'))
print(vgg16)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值