Day1-DeepWalk

论文《DeepWalk: Online Learning of Social Representations》 2014年发表在数据挖掘顶会ACM SIGKDD(KDD)上的论文

目的:学习节点表示
推动:将自然语言处理里面的无监督学习方法迁移至此
思路:将图结构序列化,类比与单词序列,然后用word2vec方法得到embedding
验证:在大型分类数据集上验证embedding包含信息的有效性

算法流程

在这里插入图片描述

  1. random walk
    利用随机游走算法(random walk)生成以节点为中心的序列
  2. skipgram
    在这里插入图片描述

问题

随机游走的随机性体现在哪里?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值