1.矩阵拼接
①直接拼接 A=[1,2;3,4];B=[5,6;7,8];
拼接:[A;B]; 即得到矩阵[1,2;3,4;5,6;7,8];
②使用cat函数
没试过 略
2.向量用指定数扩维
有个向量是1*4000的,现在想让它变成1*4096,行里多出来的96个元素全为元素n
A(4001:4096) =n*ones(1,96); %n为你想要添加的数字。
Python好像有类似的指令,也对比一下,使用的是numpy。
x原先为1维(只有轴axis=0)的数组,使用expand_dims扩展出1维(扩展出轴axis=1)
>>> x = np.array([1, 2])
>>> x.shape
(2,)
>>> x = np.expand_dims(x, axis=1)
>>> x
array([[1],
[2]])
>>> x.shape
(2, 1)
3.画函数图像
f=@(x,y)[x.^2 x.*y y.^2 x y]*x_planet+1;%小语法点,.^ .*是指对该向量对应每项幂次/相乘。
h=ezplot(f,[0,10,-3,5]) %显而易见,[]里面的是坐标轴范围
4.获取矩阵行列
[m,n]=size(A)
5.右除与左除
感觉是相对左乘、右乘定义的。举个例子,AB=C。
A对B左乘,也可以看做B对A右乘。
所以:
解A时为,在Matlab中记为C/B 叫做右除(移过去的B在右边)
解B时为,在Matlab中记为A\B 叫做左除(移过去的A在左边)
得到对应关系:
左乘-右除 左除-右乘
6.使x成为n行,1列,元素全为零的矩阵
x = zeros(n,1);配合2食用。