Matlab学习

第九章

2.subs函数

subs函数可以用指定符号替换符号表达式中的某一特定符号,调用格式:

R=subs(s)%用工作空间中的变量值替代符号表达式s中的所有符号变量

R=subs(S,New)%用新符号变量New替代原来符号表达式S中的默认变量

R=subs(S,Old,New)%用符号变量New替代原来符号表达式S中的变量Old【9 7】替换函数subs

应用示例
syms a b t;
subs(a^2+a*b+8,a,1)  %将a^2+a*b+8中的a替换为1
subs(exp(a*t),'a',-magic(2))  % magic函数应用:生成一个n*n阶的魔方矩阵,即每行每列、对角线和都相等

9.1.4符号表达式的化简

collect函数(就是用来合并同类项的)

功能:将符号表达式中的同类项合并

调用格式:R=collect(S) %合并表达式S中相同次幂的项。S可以是表达式,也可以是符号矩阵

                  R=collect(S,v) %合并表达式S中具有V 次幂的项。不指定v,则合并所有x相同次幂的项

expand函数 (将里面的式子展开)

expand(cos(x+y)) %将三角函数展开,=cosx*cosy-sinx*siny

horner(f) 函数(将多项式转换成嵌套形式 就是跟collectsyms x y;horner(f)差不多的 提公因式)

syms x y

f=x^3-6*x^2+11*x-6;

horner(f)

factor函数

(对多项式进行因式分解)

simplify函数

(按照特定要求化简式子)

M=[(x^2+5*x+6)/(x+2),sin(x)*sin(2*x)+cos(x)*cos(2*x);
    (exp(-x*1i)*1i)/2-(exp(x*1i))/2,sqrt(16)];
S=simplify(M)

sqrt函数

(就是开根号 求平方根的)

digits(d)

%将近似解的精度调整为d位有效数字,d默认为32,为空时,得到当前采用的精度

vpa(A,d)

                        %求符号解A的近似解,该近似解的有效数位由参数d指定

                      %如果不指定d,则按照一个digits(d)指令设置的有效位数输出

double(A) 

%把符号矩阵或任意精度表示的矩阵A转换成双精度矩阵

A=[3.100 1.300 5.500;4.978 4.400 1;9.000 2.90 4.61];
S=sym(A) %就是说
digits(6)%转换成有效位数为6的任意精度的矩阵
vpa(S)

9.2符号微积分及其变换

1.diff函数

(就是求导数着呢 后面有个数就是 让求几阶导)

调用格式:

Y=diff(X)             %对符号表达式或符号矩阵X求微积分 

Y=diff(X,n)          %对X中的默认变量进行n阶微分运算

Y=diff(X,n,dim)    %对符号表达式或者矩阵X沿dim指定的维进行n阶微分运算

2.jacobian函数

注意:第一个参数必须是行向量 第二个参数必须是列向量。

limit函数

limit(F,x a)    %求当→a时符号表达式F的极限

limit(F,a)      %F采用默认自变量,求F的自变量趋近于a时的极限值

limit(F,x,a,'left')  %求F的左极限,即自变量从左趋近于a时的函数极限值

limit(F,x,a,'right')  %求F的右极限,即自变量从右边趋近于a时的函数极限值

sysum函数 

级数求和   例如\sum_{k=1}^{10}K^2

r=sysum(s,v,a,b)   %求符号表达式s中的变量v从a到b的和

r=symsum(s,a,b)  %求符号表达式s中的默认自变量从a到b的和

r=symsum(s,v)    %求符号表达式s中的变量v从0到v-1的和

Taylor函数 

利用已知函数的不同阶导数的组合近似地逼近函数。

调用格式:T=taylor(f)       %返回符号表达式f在默认变量=0处做5阶Taylor展开时的展开式

                  T=taylor(f,v)         %返回符号表达式f在v=0处做5阶Taylor展开时的展开式

                   T=taylor(f,v,a)        %返回f在v=a处做5阶Taylor展开的展开式

                   T=taylor(f,v,'Order',n)  %返回f的n-1阶麦克劳林级数展开式

                                                        %即在v=0处做Taylor展开,f以符号标量v作为自变量

int函数

(用来求符号表达式的积分)

调用格式:R=int(S)  %用默认变量求符号表达式S的不定积分值,默认变量可用函数findsym确定

                  R=int(S,v) %用符号标量v作为变量求符号表达式S的不定积分值

                  R=int(S,a,b)  %符号表达式采用默认变量,该函数用来求默认变量从a变到b时的符号表达式

                 R=int(S,v,a,b)  %求当v从a变到b时符号表达式S的定积分值,S采用符号标量v作为变量

%【9 21】求积分
syms x y;
int(sin(x),0,pi)

%【9 22】求二重积分
syms x y;
int(int(x^2+y^2,x,x^2),x,y)

9.3_符号矩阵的计算

Fourier变换及其反变换

fourier和ifourier函数的使用方法

Fw=fourier(ft,t,w)  %求时域函数ft的Fourier变换Fw

ft=ifourier(Fw,w,t)  %求频域函数Fw的Fourier反变换

(其中,ft是以t为自变量的时域函数,Fw是以圆周率w为自变量的频域函数)

Laplace变换及其反变换

Fs=laplace(ft,t,s)   %求时域函数ft的Laplaec变换Fs

ft=ilaplace(Fs,s,t)  %求频域函数Fs的Laplace反变换ft

(其中,ft是以t为自变量的时域函数,Fs是以复频率s为自变量的频域函数)

%【9 24】求Laplace变换及其反变换
syms t s;
syms a b positive; %posive正数  复数(unreal )实数(real)
Mt=[dirac(t-a),heaviside(t-b);exp(-t)*sin(b*t),cos(t)];
%dirac和heaviside分别为单位脉冲函数和单位阶跃函数
MS=laplace(Mt,t,s)%拉普拉斯变换
ft=ilaplace(MS,s,t)%反变换

一个序列的Z变换及其反变换

Hibert(希尔伯特矩阵)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值