深度学习Day-12:实现数据增强

 🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客
 🍖 原作者:[K同学啊 | 接辅导、项目定制]

一、 基础配置

  • 语言环境:Python3.7
  • 编译器选择:Pycharm
  • 深度学习环境:TensorFlow2.4.1

二、 前期准备 

1.设置GPU

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

根据个人设备情况,选择使用GPU/CPU进行训练,若GPU可用则输出:

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

由于在设备上安装的CUDA版本与TensorFlow版本不一致,故这里直接安装了CPU版的TensorFlow,无上述输出。

2.导入数据

本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据集合,并设置对应文件目录,以供后续学习过程中使用。

运行下述代码:

import matplotlib.pyplot as plt

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

from tensorflow.keras import layers
import tensorflow as tf

data_dir   = "../data"
img_height = 224
img_width  = 224
batch_size = 32

3.加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

得到如下输出:

Found 3400 files belonging to 2 classes.
Using 2380 files for training.

Found 3400 files belonging to 2 classes.
Using 1020 files for validation.

在原始数据集中,不包含测试集。因此需要使用 tf.data.experimental.cardinality 来确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。

val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)

print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))

得到如下输出: 

Number of validation batches: 26
Number of test batches: 6

接着,我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称:

class_names = train_ds.class_names
print(class_names)

得到如下输出:

['cat', 'dog']

4.配置数据集

  • shuffle() : 打乱数据

  • prefetch() :预取数据,加速运行

  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds  = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

5.数据可视化 

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        ax = plt.subplot(5, 8, i + 1)
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])

        plt.axis("off")
    plt.show()

得到如下输出:

​ 

三、数据增强 

我们可以使用框架中的API: tf.keras.layers.experimental.preprocessing.RandomFliptf.keras.layers.experimental.preprocessing.RandomRotation 进行数据增强。

  • tf.keras.layers.experimental.preprocessing.RandomFlip水平和垂直随机翻转每个图像;

  • tf.keras.layers.experimental.preprocessing.RandomRotation随机旋转每个图像;
data_augmentation = tf.keras.Sequential([
  tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
  tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])

其中,第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。 

接着,通过:

# Add the image to a batch.
image = tf.expand_dims(images[i], 0)

plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = data_augmentation(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0])
    plt.axis("off")
plt.show()

可视化数据增强的结果: 

四、增强方式

1.将其嵌入model中

model = tf.keras.Sequential([
  data_augmentation,
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
])

这样做可以使这块的工作得到GPU的加速(如果你使用了GPU训练的话)

2.在Dataset数据集中进行数据增强

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds

train_ds = prepare(train_ds)

五、编译模型

model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])

在准备进行训练之前,需要再对模型进行一些设置,以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率;

  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新;

  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率;

可通过以下代码实现:

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

六、训练模型 

通过下列示例代码:

epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

运行得到如下输出:

Epoch 1/20
75/75 [==============================] - 23s 297ms/step - loss: 0.8472 - accuracy: 0.6109 - val_loss: 0.2080 - val_accuracy: 0.9179
Epoch 2/20
75/75 [==============================] - 25s 335ms/step - loss: 0.1652 - accuracy: 0.9368 - val_loss: 0.1262 - val_accuracy: 0.9493
Epoch 3/20
75/75 [==============================] - 29s 389ms/step - loss: 0.0857 - accuracy: 0.9619 - val_loss: 0.1777 - val_accuracy: 0.9360
Epoch 4/20
75/75 [==============================] - 28s 373ms/step - loss: 0.0773 - accuracy: 0.9745 - val_loss: 0.1239 - val_accuracy: 0.9577
Epoch 5/20
75/75 [==============================] - 28s 377ms/step - loss: 0.0480 - accuracy: 0.9821 - val_loss: 0.1231 - val_accuracy: 0.9638
Epoch 6/20
75/75 [==============================] - 29s 384ms/step - loss: 0.0109 - accuracy: 0.9976 - val_loss: 0.1225 - val_accuracy: 0.9710
Epoch 7/20
75/75 [==============================] - 28s 380ms/step - loss: 0.0078 - accuracy: 0.9985 - val_loss: 0.0984 - val_accuracy: 0.9746
Epoch 8/20
75/75 [==============================] - 28s 370ms/step - loss: 0.0022 - accuracy: 0.9995 - val_loss: 0.1018 - val_accuracy: 0.9795
Epoch 9/20
75/75 [==============================] - 28s 375ms/step - loss: 8.5892e-04 - accuracy: 1.0000 - val_loss: 0.1201 - val_accuracy: 0.9758
Epoch 10/20
75/75 [==============================] - 20s 262ms/step - loss: 3.4210e-04 - accuracy: 1.0000 - val_loss: 0.1185 - val_accuracy: 0.9771
Epoch 11/20
75/75 [==============================] - 19s 257ms/step - loss: 2.2562e-04 - accuracy: 1.0000 - val_loss: 0.1226 - val_accuracy: 0.9758
Epoch 12/20
75/75 [==============================] - 20s 261ms/step - loss: 1.6737e-04 - accuracy: 1.0000 - val_loss: 0.1245 - val_accuracy: 0.9771
Epoch 13/20
75/75 [==============================] - 20s 268ms/step - loss: 1.3166e-04 - accuracy: 1.0000 - val_loss: 0.1268 - val_accuracy: 0.9783
Epoch 14/20
75/75 [==============================] - 20s 263ms/step - loss: 1.0602e-04 - accuracy: 1.0000 - val_loss: 0.1290 - val_accuracy: 0.9771
Epoch 15/20
75/75 [==============================] - 22s 292ms/step - loss: 8.0089e-05 - accuracy: 1.0000 - val_loss: 0.1311 - val_accuracy: 0.9771
Epoch 16/20
75/75 [==============================] - 22s 293ms/step - loss: 5.4304e-05 - accuracy: 1.0000 - val_loss: 0.1311 - val_accuracy: 0.9758
Epoch 17/20
75/75 [==============================] - 27s 362ms/step - loss: 4.2249e-05 - accuracy: 1.0000 - val_loss: 0.1312 - val_accuracy: 0.9758
Epoch 18/20
75/75 [==============================] - 27s 364ms/step - loss: 3.4815e-05 - accuracy: 1.0000 - val_loss: 0.1319 - val_accuracy: 0.9758
Epoch 19/20
75/75 [==============================] - 27s 364ms/step - loss: 2.9114e-05 - accuracy: 1.0000 - val_loss: 0.1327 - val_accuracy: 0.9758
Epoch 20/20
75/75 [==============================] - 27s 364ms/step - loss: 2.4446e-05 - accuracy: 1.0000 - val_loss: 0.1338 - val_accuracy: 0.9758

通过:

loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

测试准确率为:

6/6 [==============================] - 2s 173ms/step - loss: 0.1804 - accuracy: 0.9844
Accuracy 0.984375

七、 自定义增强方式

import random

def aug_img(image):
    seed = (random.randint(0,9), 0)
    # 随机改变图像对比度
    stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
    return stateless_random_brightness
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())

可以得到:

Min and max pixel values: 2.4591687 241.47968

 通过运行下述代码,对自定义增强函数进行可视化:

plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = aug_img(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0].numpy().astype("uint8"))

    plt.axis("off")

得到:

八、个人理解

在深度学习中,数据增强是一种常用的技术,用于扩充训练数据集,以提高模型的泛化能力和减少过拟合。数据增强通过对原始数据进行一系列随机变换和扭曲来生成新的训练样本,从而增加数据的多样性。

常见的数据增强技术包括:

  1. 翻转(Flipping):对图像进行水平或垂直翻转。
  2. 旋转(Rotation):对图像进行随机角度的旋转。
  3. 缩放(Scaling):对图像进行随机比例的缩放。
  4. 平移(Translation):对图像进行随机方向的平移。
  5. 裁剪(Cropping):对图像进行随机位置的裁剪。
  6. 亮度调整(Brightness adjustment):调整图像的亮度。
  7. 噪声添加(Noise injection):向图像中添加随机噪声。
  8. 对比度调整(Contrast adjustment):调整图像的对比度。
  9. 色彩平衡(Color balancing):调整图像的色彩平衡。
  10. 饱和度调整(Saturation adjustment):调整图像的饱和度。

这些数据增强技术可以应用于图像数据,文本数据甚至是音频数据等不同类型的数据。通过使用数据增强,可以有效地提升模型的性能,尤其在数据量有限的情况下尤为重要。

本文主要工作为:

尝试了几种不同的数据增强方式,包括调用官方API进行增强、使用模型进行增强、使用自定义函数进行增强等,在后续的过程中会继续深入对应只是的学习。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值