李永乐(二)矩阵的概念及运算——笔记

这篇博客探讨了矩阵和行列式的基本概念和性质,包括矩阵的乘法规则、行列式的定义及其计算、对角矩阵的乘法和交换律。重点阐述了行列式的值为0的规律以及对角矩阵在乘法中的作用,同时提到了矩阵的迹表示方法。此外,还介绍了对角矩阵逆矩阵的求解,并提供了一个涉及矩阵乘法的证明题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵在这里插入图片描述

矩阵一定是个表格,行列式是个数。

A是个矩阵

而|A|是行列式(A是个方阵)

*
需要注意
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

*
四个符号
α,β分别是两个三维列向量
在这里插入图片描述
在这里插入图片描述
规律:
列在前,行在后,乘出来是一个矩阵。
行在前,列在后,乘出来是一个数。

这两个矩阵互为转置
在这里插入图片描述
两个数相等,就=上面矩阵主对角线元素的和(矩阵的迹)

综上:有
在这里插入图片描述

每个二阶行列式都得0
在这里插入图片描述

在这里插入图片描述

对角矩阵

若对角矩阵在边,则每一用相应的数乘
若对角矩阵在边,则每一用相应的数乘
在这里插入图片描述
两个对角矩阵相乘满足交换律
在这里插入图片描述
对角矩阵的逆矩阵就是对角上的数取倒数
在这里插入图片描述

证明题:
在这里插入图片描述
在这里插入图片描述
同时在左边乘一个A,同时在右边乘一个A。
这方法简直是妙哇。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值