【深度学习实战(32)】模型结构之解耦头(de-coupled head)与耦合头(coupled head)

本文探讨了传统检测模型中耦合头的局限性,如YOLOv3和YOLOv4,以及如何通过引入解耦头设计来改进。解耦头将类别预测和位置预测分开,优化各自任务的损失函数,提高了模型灵活性。文章还举例说明了FCOS、YOLOX和FastestDet等模型采用了解耦头技术。
摘要由CSDN通过智能技术生成

一、传统耦合头局限性

传统的检测模型,如YOLOv3和YOLOv4,使用的是单一的检测头,它同时预测目标类别和框的位置。然而,这种设计存在一些问题。首先,将类别预测和位置预测合并在一个头中,可能导致一个任务的误差对另一个任务的影响。其次,类别预测和位置预测的问题域不同,类别预测是一个多类分类问题,而位置预测是一个回归问题。这意味着它们需要不同的损失函数和网络层。

二、解耦头优势

解耦头的设计解决了上述问题。它将类别预测和位置预测分离开来,分别使用两个独立的网络分支进行处理。其中,类别预测使用一个全连接层来输出各个类别的概率,位置预测使用一系列卷积层来生成边界框的坐标。这样做的好处是可以分别优化类别预测和位置预测的损失函数,并且能够更灵活地设计网络结构和调整超参数。

三、哪些模型使用了解耦头?

1 FCOS

在这里插入图片描述

2 YOLOX

在这里插入图片描述

3 FastestDet

在这里插入图片描述

四 代码示例

耦合头demo

import torch
import torch.nn as nn
import torchvision.models as models


class CouplingHead(nn.Module):
    def __init__(self, num_classes, num_boxes):
        super(CouplingHead, self).__init__()
        
        self.num_classes = num_classes
        self.num_boxes = num_boxes
        
        # 使用预训练的ResNet18作为基础模型
        self.base_model = models.resnet18(pretrained=True)
        
        # 修改最后一层的输出通道数
        num_ftrs = self.base_model.fc.in_features
        self.base_model.fc = nn.Conv2d(num_ftrs, num_classes + 5 * num_boxes, kernel_size=1)
        
        # 分类分支
        self.classification = nn.Conv2d(num_classes, num_classes, kernel_size=1)
        
        # 回归分支
        self.regression = nn.Conv2d(5 * num_boxes, 5 * num_boxes, kernel_size=1)
        
    def forward(self, x):
        x = self.base_model(x)
        
        # 目标类别预测
        classification = self.classification(x[:, :self.num_classes, :, :])
        
        # 目标框回归
        regression = self.regression(x[:, self.num_classes:, :, :])
        
        return classification, regression
 

# 创建耦合头模型
num_classes = 10  # 类别数量
num_boxes = 4  # 每个目标的边界框数量
model = CouplingHead(num_classes, num_boxes)

# 随机生成输入数据
batch_size = 8
input_size = (224, 224)
x = torch.randn(batch_size, 3, *input_size)

# 前向传播
classification, regression = model(x)

# 输出结果
print("分类结果尺寸:", classification.shape)
print("回归结果尺寸:", regression.shape)
 

解耦头demo

import torch.nn as nn
import torch

# 定义解耦头模型
class DecouplingHeader(nn.Module):
    def __init__(self, num_classes=20):
        super(CouplingHeader, self).__init__()
        self.num_classes = num_classes
        
        # 分类模块
        self.classification = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, num_classes, kernel_size=1)
        )
        
        # 回归模块
        self.regression = nn.Sequential(
            nn.Conv2d(512, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 4, kernel_size=1)
        )
        
    def forward(self, x):
        classification = self.classification(x)
        regression = self.regression(x)
        
        return classification, regression

# 创建ResNet18主干网络
def resnet18():
    model = nn.Sequential(
        nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
        nn.BatchNorm2d(64),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
        nn.Sequential(
            BasicBlock(64, 64, stride=1),
            BasicBlock(64, 64, stride=1)
        ),
        nn.Sequential(
            BasicBlock(64, 128, stride=2),
            BasicBlock(128, 128, stride=1)
        ),
        nn.Sequential(
            BasicBlock(128, 256, stride=2),
            BasicBlock(256, 256, stride=1)
        ),
        nn.Sequential(
            BasicBlock(256, 512, stride=2),
            BasicBlock(512, 512, stride=1)
        ),
        nn.AvgPool2d(7, stride=1),
        nn.Flatten()
    )
    return model

# 定义BasicBlock模块
class BasicBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.stride = stride
        
    def forward(self, x):
        identity = x
        
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        
        out = self.conv2(out)
        out = self.bn2(out)
        
        if self.stride != 1:
            identity = self.downsample(x)
        
        out += identity
        out = self.relu(out)
        
        return out

# 创建一个输入样本进行测试
input_sample = torch.randn(1, 3, 224, 224)

# 创建ResNet18主干网络实例
backbone = resnet18()

# 创建解耦头模型实例
header = DecouplingHeader()

# 将输入样本通过主干网络和解耦模型进行前向传播
features = backbone(input_sample)
classification, regression = header(features)

# 打印输出结果的形状
print("Classification output shape:", classification.shape)
print("Regression output shape:", regression.shape)

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
RabbitMQ是一个开源的消息中间件,它实现了高效的消息传递机制,可以在分布式系统中实现解耦和异步通信。通过使用RabbitMQ,不同的应用程序可以通过发送和接收消息来进行通信,而不需要直接依赖于彼此。 解耦是指将应用程序的不同部分解开,使它们能够独立地进行开发、测试和部署。在分布式系统中,解耦是非常重要的,因为它可以降低系统的复杂性,并提高系统的可扩展性和可维护性。 RabbitMQ通过使用消息队列的方式来实现解耦。应用程序可以将消息发送到RabbitMQ的消息队列中,而不需要直接与其他应用程序进行通信。其他应用程序可以从队列中接收消息,并进行相应的处理。这种方式可以使应用程序之间的通信变得松散耦合,每个应用程序都可以独立地进行开发和部署。 RabbitMQ提供了丰富的特性来支持解耦和异步通信,包括以下几个方面: 1. 消息队列:RabbitMQ使用消息队列来存储和传递消息。消息队列可以缓冲发送方和接收方之间的消息,使得它们可以独立地进行工作。 2. 发布/订阅模式:RabbitMQ支持发布/订阅模式,可以将消息广播给多个消费者。这样,一个消息可以被多个应用程序同时接收和处理。 3. 路由和交换机:RabbitMQ使用交换机来路由消息。通过定义不同类型的交换机和绑定规则,可以将消息发送到指定的队列中。 4. 消息确认机制:RabbitMQ提供了消息确认机制,确保消息能够可靠地传递。发送方可以等待接收方的确认消息,以确保消息已经被成功处理。 5. 可靠性和持久化:RabbitMQ支持消息的持久化,即使在服务器故障或重启后,消息也不会丢失。它还提供了可靠性保证,确保消息能够按照指定的顺序进行处理。 6. 扩展性和高可用性:RabbitMQ可以通过添加多个节点来实现扩展性和高可用性。多个节点可以组成一个集群,提供更高的吞吐量和可靠性。 总之,RabbitMQ是一个强大的消息中间件,可以帮助应用程序实现解耦和异步通信。它提供了丰富的特性和灵活的配置选项,适用于各种不同的应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BILLY BILLY

你的奖励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值