深度学习项目十三:YOLO v5 引入解耦头部

本文介绍了如何在YOLO v5中引入解耦头部以提高目标检测的精度和加速网络收敛。通过修改common.py、yolo.py文件以及模型的yaml配置,实现了基于anchor的解耦头部。详细步骤包括在相应文件中添加和修改代码,以及调整模型结构。目前作者尚未对单独增加解耦头部的效果进行训练验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO v5 引入解耦头部


前言

在 YOLO x中,使用了解耦头部的方法,从而加快网络收敛速度和提高精度,因此解耦头被广泛应用于目标检测算法任务中。因此也想在YOLO v5的检测头部引入了解耦头部的方法,从而来提高检测精度和加快网络收敛,但这里与 YOLO x 解耦头部使用的检测方法稍微不同,在YOLO v5中引入的解耦头部依旧还是基于 anchor 检测的方法。


一、解耦头部示意图

在YOLO x中,使用了解耦头部的方法,具体论文请参考:https://arxiv.org/pdf/2107.08430.pdf
于是按照论文中的介绍就可以简单的画出解耦头部,在YOLO v5中引入的解耦头部最终还是基于 anchor 检测的方法。
在这里插入图片描述

二、在YOLO v5 中引入解耦头部

1.修改common.py文件

在common.py文件中加入以下代码。


                
### YOLOv8 中解耦头结构设计与实现详解 #### 解耦头的概念 解耦头是一种网络架构设计方法,在目标检测任务中用于分别处理不同类型的预测任务。传统的目标检测器通常会将边界框回归(BBox Loss)和分类(Cls Loss)的任务混合在一起完成,而解耦头则通过分离这些任务来提升模型性能[^2]。 #### YOLOv8 的解耦头设计 YOLOv8 的解耦头由多个重复模块组成,每个模块负责独立计算特定的损失项。具体来说,YOLOv8 将 BBox 预测和类别概率预测分离开来,从而允许各自优化其对应的子任务。这种设计不仅提高了训练效率,还显著改善了模型的收敛速度和精度[^3]。 以下是解耦头的主要特点: - **多分支结构**:解耦头包含若干并行的分支,每个分支专注于解决单一问题,例如位置回归或类别分类。 - **共享特征图**:尽管各分支功能独立,但它们可以共享底层提取的特征表示,减少冗余计算开销。 - **灵活性增强**:由于每种任务都有专属路径进行调整,因此能够更精细地控制学习过程中的权重更新方向。 #### 实现细节分析 在实际编码层面,YOLOv8 对于解耦头的具体实现在 `model.py` 文件中有体现。下面展示了一个简化版伪代码片段说明如何构建此类头部组件: ```python class DecoupledHead(nn.Module): def __init__(self, num_classes=80, width_multiplier=1.0): super().__init__() self.bbox_head = nn.Sequential( ConvBlock(in_channels=int(256 * width_multiplier), out_channels=512), nn.Conv2d(512, 4, kernel_size=1) # Predict (x, y, w, h) ) self.cls_head = nn.Sequential( ConvBlock(in_channels=int(256 * width_multiplier), out_channels=512), nn.Conv2d(512, num_classes, kernel_size=1) # Class probabilities ) def forward(self, x): bbox_pred = self.bbox_head(x).sigmoid() cls_pred = self.cls_head(x).softmax(dim=-1) return torch.cat([bbox_pred, cls_pred], dim=1) ``` 上述代码定义了一个简单的解耦头类 `DecoupledHead` ,它包含了两个主要组成部分——`bbox_head` 和 `cls_head` 。这两个部分均接收相同的输入张量 `x` 并输出相应的预测结果。值得注意的是,这里采用了 sigmoid 函数激活边界框坐标值以及 softmax 来规范化类别得分向量。 #### 收敛优势探讨 相比传统的单一路径设计,采用解耦头后的 YOLOv8 展现出更快的收敛特性。这是因为当我们将复杂的联合优化分解成几个相对简单的小型子问题时,梯度传播更加稳定且有效;同时也能更好地适应数据分布差异较大的情况。 ---
评论 124
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小啊磊_Vv

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值