离散数学2 抽象代数 近世代数 群环域格布尔代数 笔记

最近笔记同步更新

代数系统

代数常元相等

  1. 左幺元,右幺元存在
  2. 左零元,右零元存在
  3. 运算可结合,左逆元,右逆元存在

子代数

  1. 子集
  2. 封闭
  3. 代数常元保持

同态

映射前后运算保持,常元保持

证明同态:

  1. 映射类型
  2. 每个运算都验证同态
  3. 常元也保持

构造同态

特殊常元对应,剩下的自己试试吧

同态性质

  1. 运算可结合性,交换性,分配性,吸收性 保持
  2. 保持幺元,零元,逆元

定义

可结合,封闭,幺元,逆元

性质

  1. 群中无零元
  2. 每个元素逆元唯一
  3. 存在唯一x使得 a ∗ x = b a*x =b ax=b
  4. 满足消去律
  5. 幺元是唯一的等幂元 x ∗ e = x ∗ x → x = e x*e=x*x \rightarrow x=e xe=xxx=e
  6. G中元素在每一行,每一列都出现一次
  7. 逆元的幂=幂的逆元 ( a n ) − 1   =   ( a − 1 ) n (a^n)^ {-1} \ = \ (a^{-1}) ^n (an)1 = (a1)n
  8. ( a ∗ b ) − 1   =   a − 1 ∗ b − 1 (a*b)^{-1} \ = \ a^{-1}*b^{-1} (ab)1 = a1b1

低阶群

  • 1阶群:1
*e
ee
  • 2阶群:1
*ea
eea
aae
  • 3阶群:1
*eab
eeab
aabe
bbea
  • 4阶群:2

循环左移

*eabc
eeabc
aabce
bbcea
cceab

对角线是e

*eabc
eeabc
aaecb
bbcea
ccbae
  • 5阶群:1 循环左移
*eabcd
eeabcd
aabcde
bbcdea
ccdeab
ddeabc

群中元素的阶

使 a n = e a^n=e an=e成立的最小正整数n,n为元素的阶

定理

  1. ( a − 1 ) k = ( a k ) − 1 (a^{-1})^k=(a^k)^{-1} (a1)k=(ak)1
  2. ∣ a ∣ = n |a|=n a=n,存在k使得 a k = e a^k = e ak=e 当且仅当k是n的倍数
  3. 元素的阶小于等于群的阶

循环群

  1. 任何一个循环群必定是阿贝尔群

请添加图片描述
3. 循环群的子群必是循环群 生成元为 g m g^m gm ,m是最小正整数。

子群的判定

  1. 非空,封闭,逆元
  2. 非空,封闭,有限
  3. 非空, ∗ ∗ a ∗ b − 1 ∈ S ∗ ∗ **a*b^{-1} \in S** ab1S

群同态


陪集和拉格朗日定理

陪集性质

  1. a H = b H aH=bH aH=bH a H ∩ b H = ∅ aH \cap bH = \empty aHbH=
  2. ∣ a H ∣ = ∣ b H ∣ = ∣ H ∣ |aH|=|bH|=|H| aH=bH=H
  3. b ∈ a H     ↔      a − 1 ∗ b ∈ H b \in aH \ \ \ \leftrightarrow \ \ \ \ a^{-1} * b \in H baH       a1bHla

拉格朗日定理

  1. 子群的阶是群阶的因子
  2. 群元素的阶是群阶的因子

推论

  1. 质数阶的群只有平凡子群
  2. 质数阶的群是循环群,任何不为幺元的元素均可作为生成元

环和域

< A , + , ∗ > <A,+,*> <A,+,> 是代数系统,满足

  1. < A , + > <A,+> <A,+>是阿贝尔群
  2. < A , ∗ > <A,*> <A,>是半群
  3. *对+可分配

环的性质

  1. 加法幺元是乘法零元、
  2. a ∗ ( − b ) = ( − a ) ∗ b = − ( a ∗ b ) a* (-b)=(-a)*b = -(a*b) a(b)=(a)b=(ab)

  1. ( − a ) ∗ ( − b ) = a ∗ b (-a)*(-b)=a*b (a)(b)=ab
  2. a ∗ ( b − c ) = a ∗ b − a ∗ c a*(b-c)=a*b-a*c a(bc)=abac (分配律)

整环

< A , + , ∗ > <A,+,*> <A,+,> 是代数系统,满足

  1. < A , + > <A,+> <A,+>是阿贝尔群
  2. < A , ∗ > <A,*> <A,>可交换 独异点 无零因子
  3. *对+可分配

< A , + , ∗ > <A,+,*> <A,+,> 是代数系统,满足

  1. < A , + > <A,+> <A,+>是阿贝尔群
  2. < A − { 0 } , ∗ > <A-\{0\},*> <A{0},>是阿贝尔群
  3. *对+可分配

性质!!

  1. 域是整环
  2. 有限整环是域

偏序集中,任意两个元素都有最小上界和最大下界

五个元素以内互补同构的格

  • 1个元素 1
  • 2个元素 1
  • 3个元素 1

以上全是链

  • 4个元素 2
  • 4个元素 5

格的性质(我猜不会考)

分配不等式: (对偶也成立)

a ∨ ( b ∧ c ) ≤ ( a ∨ b ) ∧ ( a ∨ c ) a \vee (b\wedge c)\leq (a\vee b)\wedge (a\vee c) a(bc)(ab)(ac)

模不等式:

a ≤ c       ↔       a ∨ ( b ∧ c ) ≤ ( a ∨ b ) ∧ c a\leq c \ \ \ \ \ \leftrightarrow \ \ \ \ \ a\vee(b \wedge c )\leq (a\vee b)\wedge c ac          a(bc)(ab)c

子格

  1. 子集
  2. ∨ ∧ 封闭 \vee \wedge 封闭 封闭

分配格

请添加图片描述

分配格的判定

  1. 元素个数
  2. 子格不与五角格,钻石格同构

分配格性质

{ a ∨ b = a ∨ c a ∧ b = a ∧ c } → b = c \begin{Bmatrix} a\vee b= a\vee c \\ a \wedge b=a\wedge c\\ \end{Bmatrix} \rightarrow b=c {ab=acab=ac}b=c

有界格

既有全上界也有全下界

有补格

对于 a , ∃ b  使得 a ∧ b = 0 , a ∨ b = 1 对于a,\exist b \ 使得a\wedge b = 0, a\vee b =1 对于a,b 使得ab=0,ab=1 b为a 的补元

每个元素都有补元的格是有补格

链不是有补格

布尔格和布尔代数

布尔格:

有补分配格

布尔代数 → 与 < ρ ( A ) , ⊆ > 同构 <\rho (A),\subseteq > 同构 <ρ(A),⊆>同构

有限布尔代数性质

  1. 元素个数是 2 n 2^n 2n
  2. 元素个数相同的布尔代数是同构的

有限布尔代数的原子表示

原子: 覆盖0的元素 → 集合A的元素

有限布尔代数性质

  1. ∀ b ≠ 0 , ∃ 原子 a 使得 a ≤ b \forall b \ne 0, \exists 原子a 使得 a \leq b b=0,原子a使得ab
  2. a,b是两个原子 , a ∧ b = 0 a \wedge b = 0 ab=0
  3. b ∧ c ′ = 0 ↔ b ≤ c b\wedge c' =0 \leftrightarrow b\leq c bc=0bc
  4. a i ≤ b   a i a_i \leq b \ a_i aib ai是原子,则b可以由 b = a 1 ∨ a 2 . . . . . . a k b=a_1\vee a_2 ...... ak b=a1a2......ak 唯一表示
  5. { a ≤ b a ≤ b ′ } \begin{Bmatrix} a \leq b \\ a\leq b' \end{Bmatrix} {abab} 有且仅有一式成立,其中a为原子,b不是0

主析取范式主合取范式

如果元素取值不只是0,1 则两个范式不互补,需要分开求

有系数也不能分开求

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值