近世代数--有限交换群--存在元素的阶是群阶的素因子

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

  • 先从特殊的有限交换群–循环群开始:循环群 G = < a > , ∣ G ∣ = n , G=<a>,|G|=n, G=<a>,G=n对于 ∀ m ∣ n , ∃ H ≤ G , \forall m\mid n,{\exists}H\le G, mn,HG,使得 ∣ H ∣ = m |H|=m H=m

证明: m ∣ n → n = m t m\mid n\rightarrow n=mt mnn=mt,由此构造子群
b = a t , ∀ a ∈ G , b m = ( a t ) m = a t m = a n = e b=a^t,\forall a\in G,\\b^m=(a^t)^m=a^{tm}=a^n=e b=at,aG,bm=(at)m=atm=an=e
H = < b > , ∣ H ∣ = m H=<b>,|H|=m H=<b>,H=m

G G G为有限交换群, ∣ G ∣ = n = p m , p |G|=n=pm,p G=n=pm,p为素数, ∃ a ∈ G , {\exists}a\in G, aG,使得 ∣ a ∣ = p |a|=p a=p

证明:数学归纳法
(1) m = 1 m=1 m=1时, ∣ G ∣ = n = p |G|=n=p G=n=p,由素数阶群是循环群 G G G是循环群,那么就可以用 G = < a > G=<a> G=<a>表示。
∣ G ∣ = ∣ < a > ∣ = p → a p = e , ∣ a ∣ = p |G|=|<a>|=p\\\rightarrow a^p=e,|a|=p G=<a>=pap=e,a=p

(2) 假设在小于 m m m时结论成立;

(3) 证明 m m m时结论成立:
构造子群 H = < a > , ∀ a ∈ G & a ≠ e ; → ∣ H ∣ ∣ ∣ G ∣ = p m → ∣ H ∣ ∣ p , o r ∣ H ∣ ∣ m , o r ( ∣ H ∣ ∣ m , ∣ H ∣ ∣ p ) H=<a>,\forall a\in G \&a\neq e;\rightarrow |H|\mid |G|=pm\rightarrow |H|\mid p, or |H| \mid m,or (|H|\mid m,|H|\mid p) H=<a>,aG&a=e;HG=pmHporHmor(Hm,Hp)

我本来想分类成 ∣ H ∣ ∣ p |H|\mid p Hp ∣ H ∣ ∤ p |H|\nmid p Hp,但是在 s = ∣ H ∣ ∤ p s=|H|\nmid p s=Hp时无法推出 ( ∣ H ∣ , p ) = 1 , (|H|,p)=1, (H,p)=1,因为有可能 ∣ H ∣ = k p > p |H|=kp>p

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值