Stochastic pooling随机池化代码实现

Stochastic Pooling(随机池化)

随机池化Stochastic Pooling是Zeiler等人于ICLR2013提出的一种池化操作。随机池化的计算过程如下

  • 先将方格中的元素同时除以它们的和sum,得到概率阵
  • 按照概率随机选中方格
  • pooling得到的值就是方格位置的值

 

随机池化只需对特征图中的元素按照其概率值大小随机选择,即元素值大的被选中的概率也大,而不像max-pooling那样,永远只取那个最大值元素,这使得随机池化具有更强的泛化能力

import torch
import torch.nn as nn
from torch.autograd import Variable

class StochasticPool2DLayer(nn.Module):
    def __init__(self, pool_size=2, maxpool=True, training=False, grid_size=None, **kwargs):
        super(StochasticPool2DLayer, self).__init__(**kwargs)
        self.rng = torch.cuda.manual_seed_all(123) # this changed in Pytorch for working
        self.pool_size = pool_size
        self.maxpool_flag = maxpool
        self.training = training
        if grid_size:
            self.grid_size = grid_size
        else:
            self.grid_size = pool_size

        self.Maxpool = torch.nn.MaxPool2d(kernel_size=self.pool_size, stride=1)
        self.Avgpool = torch.nn.AvgPool2d(kernel_size=self.pool_size,
                                          stride=self.pool_size,
                                          padding=self.pool_size//2,)
        self.padding = nn.ConstantPad2d((0,1,0,1),0)

    def forward(self, x, training=False, **kwargs):
        if self.maxpool_flag:
            x = self.Maxpool(x)
            x = self.padding(x)
        if not self.training:
            # print(x.size())
            x = self.Avgpool(x)
            return x
            # return x[:, :, ::self.pool_size, ::self.pool_size]       
        else:
            w, h = x.data.shape[2:]
            n_w, n_h = w//self.grid_size, h//self.grid_size
            n_sample_per_grid = self.grid_size//self.pool_size
            # print('===========================')
            idx_w = []
            idx_h = []
            if w>2 and h>2:
                for i in range(n_w):
                    offset = self.grid_size * i
                    if i < n_w - 1:
                        this_n = self.grid_size
                    else:
                        this_n = x.data.shape[2] - offset
                    
                    this_idx, _ = torch.sort(torch.randperm(this_n)[:n_sample_per_grid])
                    idx_w.append(offset + this_idx)
                #     print(i,offset,this_n)
                #     print(this_idx)
                # print('***************************************')
                # print('***************************************')
                # print('***************************************')
                # print('***************************************')
                # print('***************************************')
                # print(idx_w)
                # print('///')
                for i in range(n_h):
                    offset = self.grid_size * i
                    if i < n_h - 1:
                        this_n = self.grid_size
                    else:
                        this_n = x.data.shape[3] - offset
                    this_idx, _ = torch.sort(torch.randperm(this_n)[:n_sample_per_grid])

                    idx_h.append(offset + this_idx)
                idx_w = torch.cat(idx_w, dim=0)
                idx_h = torch.cat(idx_h, dim=0)
            else:
                idx_w = torch.LongTensor([0])
                idx_h = torch.LongTensor([0])

            output = x[:, :, idx_w.cuda()][:, :, :, idx_h.cuda()]
            return output

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 以下是一个简单的卷积神经网络语音去噪的代码示例,使用了 Python 和 Keras 框架: ```python import numpy as np from keras.layers import Input, Conv1D, MaxPooling1D, UpSampling1D from keras.models import Model # 加载训练数据和测试数据 x_train = np.load('x_train.npy') # 带噪声的语音信号 y_train = np.load('y_train.npy') # 去噪后的语音信号 x_test = np.load('x_test.npy') y_test = np.load('y_test.npy') # 构建卷积神经网络模型 input_signal = Input(shape=(8000, 1)) # 输入语音信号的形状为(8000, 1) conv1 = Conv1D(8, 3, activation='relu', padding='same')(input_signal) pool1 = MaxPooling1D(2, padding='same')(conv1) conv2 = Conv1D(16, 3, activation='relu', padding='same')(pool1) pool2 = MaxPooling1D(2, padding='same')(conv2) conv3 = Conv1D(32, 3, activation='relu', padding='same')(pool2) encoded = MaxPooling1D(2, padding='same')(conv3) conv4 = Conv1D(32, 3, activation='relu', padding='same')(encoded) up1 = UpSampling1D(2)(conv4) conv5 = Conv1D(16, 3, activation='relu', padding='same')(up1) up2 = UpSampling1D(2)(conv5) conv6 = Conv1D(8, 3, activation='relu', padding='same')(up2) up3 = UpSampling1D(2)(conv6) decoded = Conv1D(1, 3, activation='sigmoid', padding='same')(up3) autoencoder = Model(input_signal, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') # 训练模型 autoencoder.fit(x_train, y_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, y_test)) # 保存模型 autoencoder.save('autoencoder.h5') ``` 在这个代码示例中,我们使用了一个简单的卷积神经网络模型,包括了多个卷积层、池化层和上采样层。模型的输入是一个形状为(8000, 1)的语音信号,输出也是一个形状为(8000, 1)的语音信号。模型的损失函数采用了二元交叉熵,优化器采用了Adam。 我们使用了Keras框架来构建和训练模型。首先,我们加载了训练数据和测试数据,其中x_train和x_test是带噪声的语音信号,y_train和y_test是去噪后的语音信号。然后,我们定义了卷积神经网络模型,并使用fit()函数来训练模型。最后,我们使用save()函数将训练好的模型保存到文件中,以备后续使用。 请注意,这只是一个简单的卷积神经网络语音去噪的示例代码,实际应用中可能需要更复杂的模型和更多的数据来获得更好的性能。 ### 回答2: 卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,常用于处理图像等数据。而语音去噪也是一项重要任务,其目的是从包含噪声的音频信号中提取出干净的音频信号。 在语音去噪任务中,可以使用卷积神经网络来学习噪声模式,并去除信号中的噪声。具体的代码实现包括以下几个步骤: 1. 数据预处理:首先需要将音频信号转换为时间段上的频谱图。可以使用傅里叶变换将信号转换到频域,并将其划分为小块。这些小块通过时频转换算法(如短时傅里叶变换)转换为频谱图。 2. 数据准备:准备训练数据和测试数据。一般会使用一组有噪音和无噪音的音频对作为训练数据,其中有噪音的音频作为输入,无噪音的音频作为目标输出。 3. 构建卷积神经网络模型:卷积神经网络由卷积层、池化层和全连接层等组成。可以使用Python中的深度学习框架(如TensorFlow或PyTorch)来构建模型。在模型中可以使用卷积层和池化层来提取输入信号中的特征,然后使用全连接层进行分类或回归等任务。 4. 模型训练:使用训练数据对模型进行训练。可以使用随机梯度下降算法(SGD)或其他优化算法来调整模型参数,以最小化预测值与真实值之间的损失函数。 5. 模型评估:使用测试数据对模型进行评估。计算模型在测试数据上的准确度或其他指标,以评估模型的性能。 6. 预测和去噪:使用已经训练好的模型对新的音频数据进行预测和去噪。将有噪音的音频输入到模型中,得到去除噪音的音频输出。 总结:卷积神经网络可以应用于语音去噪任务中,通过学习噪声模式,从有噪音的音频中提取出干净的音频信号。实现代码需要进行数据预处理、数据准备、模型构建、模型训练、模型评估和预测去噪等步骤。 ### 回答3: 卷积神经网络(Convolutional Neural Network)作为一种深度学习模型,可以成功应用于语音去噪任务。以下是一个简单的卷积神经网络语音去噪的代码示例,主要包括数据预处理、网络模型构建、训练和测试等步骤: 1. 数据预处理: - 导入语音声音文件,例如.wav格式的音频文件,以及对应的噪声文件。 - 将音频文件和噪声文件进行预处理,例如读取音频文件的振幅数据。 - 对振幅数据进行特征提取,例如使用短时傅里叶变换(Short-Time Fourier Transform)将音频信号转换为频谱图。 2. 网络模型构建: - 构建卷积神经网络模型,包括输入层、卷积层、池化层和全连接层等。 - 使用卷积层和池化层对频谱图进行特征提取和降维。 - 使用全连接层将特征映射到噪声和语音的输出。 - 使用激活函数和正则化方法提高模型的性能和鲁棒性。 3. 训练: - 划分训练集和验证集,用于训练和调整模型的参数。 - 使用训练数据和标签,通过反向传播算法优化模型的权重和偏置。 - 设置损失函数,例如均方根误差(Root Mean Square Error),用于衡量预测结果与实际标签之间的差异。 - 设置优化算法,例如随机梯度下降(Stochastic Gradient Descent)用于最小化损失函数。 4. 测试: - 导入测试数据,并进行与训练数据相同的预处理步骤。 - 将预处理后的数据输入到训练好的模型中,得到去噪后的语音输出。 - 使用评估指标,例如信噪比(Signal-to-Noise Ratio)或语音质量评价等,对去噪结果进行评估和比较。 以上是一个简单的卷积神经网络语音去噪的代码示例,根据具体的需求和环境,还可以进行更多的优化和改进,例如增加更多的卷积层或引入循环神经网络等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值