5、色彩空间转换

该博客主要介绍了图像处理中的色彩空间转换,包括RGB到GRAY、HSV和YUV的转换,并展示了如何使用OpenCV进行这些转换。此外,还涵盖了色彩跟踪,通过设置HSV颜色范围来过滤图像。最后,探讨了通道分离、合并以及修改图像通道的方法,如分离RGB通道并重新组合,以及单独修改某一通道的值。
摘要由CSDN通过智能技术生成

代码

解释都在注释里啦

import cv2 as cv
import numpy as nm

#调用转换函数实现图像色彩空间转换
def colorSpace(img):
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 将RGB转换为GRAY
    cv.imshow("gray", gray)
    hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV)  # 将RGB转换为HSV
    cv.imshow("hsv", hsv)
    yuv = cv.cvtColor(img, cv.COLOR_BGR2YUV)  # 将RGB转换为YUV
    cv.imshow("yuv", yuv)


def testColorSpace():
    src = cv.imread("me.jpg")
    cv.namedWindow("Before", cv.WINDOW_NORMAL)
    cv.imshow("Before", src)
    colorSpace(src)
    cv.waitKey(0)
    cv.destroyAllWindows()
    
#色彩空间转换,利用inrange函数过滤视频中的颜色,实现跟踪某一颜色
def traceColor():
    cap=cv.VideoCapture("you.mp4")
    while True:
        ret, frame = cap.read()  
        if ret==False:
            print("Wrong")
            break
        else:
            hsv=cv.cvtColor(frame,cv.COLOR_BGR2HSV)
            # 转换色彩空间为hsv
            hsvLow = nm.array([26, 43, 26])  
            # 设置过滤的颜色的低值
            hsvHigh = nm.array([34, 255, 255])
              # 设置过滤的颜色的高值 
            change = cv.inRange(hsv, hsvLow, hsvHigh)
            # 节图像颜色信息(H)、饱和度(S)、亮度(V)区间
            cv.imshow("Before",frame)
            cv.imshow("After",change)
            if cv.waitKey(50) & 0xFF==ord("r"):
                cv.destroyAllWindows()
                break


#通道分离、合并,修改某一通道
def operate(img):
    #通道分离
    b,g,r=cv.split(img)
    cv.imshow("blue",b)
    cv.imshow("green",g)
    cv.imshow("red",r)

    #通道合并
    gather=cv.merge([b,g,r])
    cv.imshow("merge",gather)

    #修改通道值
    img[:,:,1]=100
    cv.imshow("single",img)

def testOperate():
    src = cv.imread("me.jpg")
    cv.namedWindow("Before", cv.WINDOW_NORMAL)
    cv.imshow("Before", src)
    operate(src)
    cv.waitKey(0)
    cv.destroyAllWindows()


testColorSpace()
testOperate()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值