论文名称 | Defense against backdoor attack in federated learning |
---|---|
作者 | LJY |
来源 | AAAI |
领域 | Machine Learning – Federal learning – privacy and security |
问题 | 学习 |
方法 | 学学学 |
创新 | 没有 |
阅读记录
总结
- 在收敛轮进行的攻击会直接影响全局模型,而在全局模型已中毒的情况下,全局模型的更新更接近于恶意客户端的更新的,与良性客户端更新的距离较远;
- 在早期通信进行的攻击下,恶意模型在主任务和后门任务上的准确率都较低,因此难以从性能的角度检测后门。但是,由于在嵌入触发器前后,恶意神经元对同一张图像的表示不同,可以根据该现象判断恶意客户端。