READ-2337 Defense against backdoor attack in federated learning

论文探讨了在联邦学习中,后门攻击对全局模型的影响以及检测策略。攻击在收敛轮影响全局模型,而早期攻击不易通过性能识别。论文提出利用恶意神经元对同一图像表示的差异作为检测依据。
摘要由CSDN通过智能技术生成
论文名称Defense against backdoor attack in federated learning
作者LJY
来源AAAI
领域Machine Learning – Federal learning – privacy and security
问题学习
方法学学学
创新没有

阅读记录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

  1. 在收敛轮进行的攻击会直接影响全局模型,而在全局模型已中毒的情况下,全局模型的更新更接近于恶意客户端的更新的,与良性客户端更新的距离较远;
  2. 在早期通信进行的攻击下,恶意模型在主任务和后门任务上的准确率都较低,因此难以从性能的角度检测后门。但是,由于在嵌入触发器前后,恶意神经元对同一张图像的表示不同,可以根据该现象判断恶意客户端。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值