第P1周:Pytorch实现mnist手写数字识别

第P1周:Pytorch实现mnist手写数字识别

📌第P1周:实现mnist手写数字识别📌

  • 难度:小白入门⭐

  • 语言:Python3、Pytorch

  • 环境:Python3.8 Pytorch

  • 编辑器:jupyter lab

神经网络程序说明:

image.png

文章目录:

目录

第P1周:Pytorch实现mnist手写数字识别

        P.1数据集介绍

        P2设置GPU

        P3导入数据

        P4数据可视化

        P5构建简单的CNN网络

        P6训练模型

                6.1设置超参数

                6.2编写训练函数

        P7编写测试函数

        P8正式训练

        P9结果可视化遇到的问题解决

P.1数据集介绍

MMNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges(下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()这行代码直接调用,这样就比较简单

MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28,数据集样本如下:

image.png

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

img

P2设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

 import torch
 import torch.nn as nn
 import matplotlib
 matplotlib.use('TkAgg')  # 或者 'Agg'
 import matplotlib.pyplot as plt
 import torchvision
 ​
 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 ​
 print(device)

P3导入数据

使用dataset下载MNIST数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

**torchvision.datasets.MNIST详解**

torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的MNIST数据集。

函数原型:

 torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

参数说明:

  • root (string) :数据地址

  • train (string) :True-训练集,False-测试集

  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。

  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化

  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。

 train_ds = torchvision.datasets.CIFAR10('data', 
                                       train=True, 
                                       transform=torchvision.transforms.ToTensor(),  # 将数据类型转化为Tensor
                                       download=True)
 ​
 test_ds  = torchvision.datasets.CIFAR10('data', 
                                       train=False, 
                                       transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                       download=True)

训练集和数据集下载完成:

**torch.utils.data.DataLoader详解**

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

函数原型:

 torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device='')

参数说明:

  • dataset (string) :加载的数据集

  • batch_size (int,optional) :每批加载的样本大小(默认值:1)

  • shuffle (bool,optional) : 如果为True,每个epoch重新排列数据。

  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。

  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。

  • num_workers (int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。

  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。

  • drop_last (bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)

  • timeout (numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)

  • worker_init_fn (callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。(默认:None)

 batch_size = 32
 ​
 # 用于创建训练数据的加载器
 train_dl = torch.utils.data.DataLoader(train_ds, 
                                        batch_size=batch_size, 
                                        shuffle=True)
 ​
 test_dl  = torch.utils.data.DataLoader(test_ds, 
                                        batch_size=batch_size)
 # 取一个批次查看数据格式
 # 数据的shape为:[batch_size, channel, height, weight]
 # 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
 imgs, labels = next(iter(train_dl))
 imgs.shape
  1. train_dl 是一个 PyTorch 数据加载器(DataLoader),用于加载训练数据集。通常情况下,数据加载器会将数据集分成小批量(batches)进行处理。

  2. iter(train_dl) 将数据加载器转换为一个迭代器(iterator),使得我们可以使用 Python 的 next() 函数来逐个访问数据加载器中的元素。

  3. next() 函数用于获取迭代器中的下一个元素。在这里,它被用来获取 train_dl 中的下一个批量数据。

  4. imgs, labels = ... 这行代码是 Python 的解构赋值语法。它将从 next() 函数返回的元素中提取出两个变量:imgslabels

  5. imgs 变量将包含一个批量的图像数据,而 labels 变量将包含相应的标签数据。这些图像和标签是从训练数据集中提取的。

P4数据可视化

1、squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。

2、enumerate 是 Python 的一个内置函数,它在遍历可迭代对象(如列表、元组或字符串)时提供一个自动生成的索引和值的元组。换句话说,enumerate 会将每个元素与它的索引配对,从而可以同时获取元素及其在序列中的位置。

使用 enumerate 的优点是,它简化了在遍历序列时获取索引和对应元素的过程,避免了手动维护索引的麻烦。具体来说,它会返回一个迭代器,每次迭代时会返回一个包含索引和值的元组。

使用enumerate的实例:

 fruits = ['apple', 'banana', 'cherry']
 for index, fruit in enumerate(fruits):
     print(index, fruit)
 ​

3、切片语法:

 sequence[start:stop:step]
  • start:起始索引(包含),默认为 0。如果省略,则从序列开头开始。

  • stop:结束索引(不包含)。即提取元素到 stop-1。如果省略,则到序列末尾为止。

  • step:步长,默认为 1。如果省略,则按顺序提取元素。

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = np.squeeze(imgs.numpy())
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
plt.show()  # 如果你使用的是Pycharm编译器,请加上这行代码

P5构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小

  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小

  • nn.ReLU为激活函数,使模型可以拟合非线性数据

  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)

  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播

image.png

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型:

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

P6训练模型

6.1设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

超参数:

超参数(Hyperparameters)是在机器学习和深度学习模型训练过程中需要预先设置的参数,它们对模型的训练和性能有着重要影响。与模型内部通过训练数据学习得到的参数(如神经网络中的权重和偏置)不同,超参数是由开发者在训练前手动设置的。

超参数的类型

超参数可以分为两大类:

  1. 模型超参数(Model Hyperparameters)

    • 学习率(Learning Rate):控制模型在每次迭代更新时权重的调整幅度。

    • 正则化参数(Regularization Parameters):如 L1 和 L2 正则化的系数,用于防止过拟合。

    • 神经网络架构参数:如层数、每层的神经元数量、激活函数的选择等。

    • 优化器(Optimizer):如 SGD、Adam、RMSprop 等。

  2. 训练超参数(Training Hyperparameters)

    • 批量大小(Batch Size):每次更新权重时使用的训练样本数量。

    • 迭代次数(Epochs):整个训练数据集被训练的次数。

    • 早停(Early Stopping):在训练过程中监控验证集上的性能,当性能不再提升时提前停止训练。

    • 学习率调度(Learning Rate Scheduler):动态调整学习率的方法。

为什么超参数重要?

超参数对模型的性能有很大的影响,不同的超参数设置可能会导致模型性能的显著差异。合适的超参数可以提高模型的准确性、加速训练过程、避免过拟合等。

如何选择和调整超参数?

  1. 手动调整:根据经验和试验逐步调整超参数,观察模型性能的变化。

  2. 网格搜索(Grid Search):在给定的参数范围内穷举所有可能的组合,寻找最佳超参数组合。

  3. 随机搜索(Random Search):在给定的参数范围内随机选择部分组合进行测试,通常比网格搜索效率更高。

  4. 贝叶斯优化(Bayesian Optimization):使用贝叶斯理论,通过构建概率模型来选择超参数,能够更高效地找到最优组合。

6.2编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

执行操作:

(a)遍历模型的所有参数: 优化器会遍历模型中的所有参数,包括权重和偏置。

(b)截断反向传播的梯度流: 通过清除梯度,将前一次迭代计算的梯度值设为0,确保本次迭代的梯度计算是从零开始的,不会受到上一次迭代梯度的影响。

(c)清除梯度: 每个参数的梯度值被设为0,上一次的梯度记录被清空,为下一次的反向传播和参数更新做好准备。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
  • pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。

  • (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。

  • .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。

  • .sum()是对数组中的元素求和,计算出预测正确的样本数量。

  • .item()将求和结果转换为标量值,以便在 Python 中使用或打印。

(pred.argmax(1) == y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。

P7编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

P8正式训练

1. model.train()训练模式

model.train()的作用是启用 Batch Normalization 和 Dropout。

(a)Batch Normalization 是一种用于加速和稳定深度神经网络训练的技术。它在每个小批量数据上计算均值和方差,并用这些统计量对数据进行归一化处理。

(b)Dropout 是一种防止神经网络过拟合的技术。它通过在训练过程中随机“丢弃”一部分神经元,使得网络的某些单元在前向和后向传播过程中被忽略,以达到正则化的效果。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()评估模式

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

总结:

1、Batch Normalization

训练模式(model.train()):

  • 在训练模式下,Batch Normalization 层会计算当前小批量数据的均值和方差,并使用这些值来进行归一化。

  • 同时,训练过程中会不断更新一个移动平均的均值和方差,这些移动平均值将在评估模式下使用。

评估模式(model.eval()):

  • 在评估模式下,Batch Normalization 层不会使用当前小批量数据的均值和方差,而是使用训练过程中累积的移动平均均值和方差。

2、Dorpout

训练模式(model.train()):

  • 在训练模式下,Dropout 层会以一定的概率随机丢弃(即将其输出设为零)一部分神经元。

  • 这种随机丢弃可以防止模型对训练数据过拟合,提高模型的泛化能力。

评估模式(model.eval()):

  • 在评估模式下,Dropout 层会关闭,即所有神经元都会被激活,不会有丢弃的现象。

  • 这确保了在评估和测试时,网络的输出是确定性的,不受随机因素影响。

epochs = 5
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')

训练结果:

P9结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

遇到的问题解决

问题1、AttributeError: module 'backend_interagg' has no attribute 'FigureCanvas'

问题原因:这个错误信息表示你正在尝试使用 matplotlib 来创建一个图像,但是由于某种原因,matplotlib 无法找到 FigureCanvas 属性。这通常是因为 matplotlib 的后端设置出现了问题。

A: 检查 matplotlib 的后端设置: 在代码的开头部分,尝试手动设置 matplotlib 的后端为 TkAggAgg(后者不需要 GUI 环境):

import matplotlib
matplotlib.use('TkAgg')  # 或者 'Agg'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值