第P1周:Pytorch实现mnist手写数字识别
🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊
**🙈 复现:沐风717
📌第P1周:实现mnist手写数字识别📌
-
难度:小白入门⭐
-
语言:Python3、Pytorch
-
环境:Python3.8 Pytorch
-
编辑器:jupyter lab
神经网络程序说明:
文章目录:
目录
第P1周:Pytorch实现mnist手写数字识别
P.1数据集介绍
P2设置GPU
P3导入数据
P4数据可视化
P5构建简单的CNN网络
P6训练模型
6.1设置超参数
6.2编写训练函数
P7编写测试函数
P8正式训练
P9结果可视化遇到的问题解决
P.1数据集介绍
MMNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges(下载后需解压)。我们一般会采用(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
这行代码直接调用,这样就比较简单
MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28
,数据集样本如下:
如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784
的向量。因此我们可以把训练集看成是一个[60000,784]
的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1
之间。
P2设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU
import torch import torch.nn as nn import matplotlib matplotlib.use('TkAgg') # 或者 'Agg' import matplotlib.pyplot as plt import torchvision device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device)
P3导入数据
使用dataset下载MNIST数据集,并划分好训练集与测试集
使用dataloader加载数据,并设置好基本的batch_size
⭐ **torchvision.datasets.MNIST详解**
torchvision.datasets
是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets
中的MNIST
数据集。
函数原型:
torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)
参数说明:
-
root (string) :数据地址
-
train (string) :
True
-训练集,False
-测试集
-
download (bool,optional) : 如果为
True
,从互联网上下载数据集,并把数据集放在root目录下。
-
transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
-
target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。
train_ds = torchvision.datasets.CIFAR10('data', train=True, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor download=True) test_ds = torchvision.datasets.CIFAR10('data', train=False, transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor download=True)
训练集和数据集下载完成:
⭐ **torch.utils.data.DataLoader详解**
torch.utils.data.DataLoader
是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。
函数原型:
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device='')
参数说明:
-
dataset (string) :加载的数据集
-
batch_size (int,optional) :每批加载的样本大小(默认值:1)
-
shuffle (bool,optional) : 如果为
True
,每个epoch重新排列数据。 -
sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。
-
batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
-
num_workers (int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
-
pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
-
drop_last (bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
-
timeout (numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
-
worker_init_fn (callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。(默认:None)
batch_size = 32 # 用于创建训练数据的加载器 train_dl = torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True) test_dl = torch.utils.data.DataLoader(test_ds, batch_size=batch_size)
# 取一个批次查看数据格式 # 数据的shape为:[batch_size, channel, height, weight] # 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。 imgs, labels = next(iter(train_dl)) imgs.shape
-
train_dl
是一个 PyTorch 数据加载器(DataLoader),用于加载训练数据集。通常情况下,数据加载器会将数据集分成小批量(batches)进行处理。 -
iter(train_dl)
将数据加载器转换为一个迭代器(iterator),使得我们可以使用 Python 的next()
函数来逐个访问数据加载器中的元素。 -
next()
函数用于获取迭代器中的下一个元素。在这里,它被用来获取train_dl
中的下一个批量数据。 -
imgs, labels = ...
这行代码是 Python 的解构赋值语法。它将从next()
函数返回的元素中提取出两个变量:imgs
和labels
。 -
imgs
变量将包含一个批量的图像数据,而labels
变量将包含相应的标签数据。这些图像和标签是从训练数据集中提取的。
P4数据可视化
1、squeeze()
函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )。
2、enumerate
是 Python 的一个内置函数,它在遍历可迭代对象(如列表、元组或字符串)时提供一个自动生成的索引和值的元组。换句话说,enumerate
会将每个元素与它的索引配对,从而可以同时获取元素及其在序列中的位置。
使用 enumerate
的优点是,它简化了在遍历序列时获取索引和对应元素的过程,避免了手动维护索引的麻烦。具体来说,它会返回一个迭代器,每次迭代时会返回一个包含索引和值的元组。
使用enumerate的实例:
fruits = ['apple', 'banana', 'cherry'] for index, fruit in enumerate(fruits): print(index, fruit)
3、切片语法:
sequence[start:stop:step]
-
start
:起始索引(包含),默认为 0。如果省略,则从序列开头开始。 -
stop
:结束索引(不包含)。即提取元素到stop-1
。如果省略,则到序列末尾为止。 -
step
:步长,默认为 1。如果省略,则按顺序提取元素。
import numpy as np # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch) plt.figure(figsize=(20, 5)) for i, imgs in enumerate(imgs[:20]): # 维度缩减 npimg = np.squeeze(imgs.numpy()) # 将整个figure分成2行10列,绘制第i+1个子图。 plt.subplot(2, 10, i+1) plt.imshow(npimg, cmap=plt.cm.binary) plt.axis('off') plt.show() # 如果你使用的是Pycharm编译器,请加上这行代码
P5构建简单的CNN网络
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
-
nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小
-
nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
-
nn.ReLU为激活函数,使模型可以拟合非线性数据
-
nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
-
nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播
import torch.nn.functional as F num_classes = 10 # 图片的类别数 class Model(nn.Module): def __init__(self): super().__init__() # 特征提取网络 self.conv1 = nn.Conv2d(1, 32, kernel_size=3) # 第一层卷积,卷积核大小为3*3 self.pool1 = nn.MaxPool2d(2) # 设置池化层,池化核大小为2*2 self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3 self.pool2 = nn.MaxPool2d(2) # 分类网络 self.fc1 = nn.Linear(1600, 64) self.fc2 = nn.Linear(64, num_classes) # 前向传播 def forward(self, x): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = torch.flatten(x, start_dim=1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x
加载并打印模型:
from torchinfo import summary # 将模型转移到GPU中(我们模型运行均在GPU中进行) model = Model().to(device) summary(model)
P6训练模型
6.1设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数 learn_rate = 1e-2 # 学习率 opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
超参数:
超参数(Hyperparameters)是在机器学习和深度学习模型训练过程中需要预先设置的参数,它们对模型的训练和性能有着重要影响。与模型内部通过训练数据学习得到的参数(如神经网络中的权重和偏置)不同,超参数是由开发者在训练前手动设置的。
超参数的类型
超参数可以分为两大类:
-
模型超参数(Model Hyperparameters):
-
学习率(Learning Rate):控制模型在每次迭代更新时权重的调整幅度。
-
正则化参数(Regularization Parameters):如 L1 和 L2 正则化的系数,用于防止过拟合。
-
神经网络架构参数:如层数、每层的神经元数量、激活函数的选择等。
-
优化器(Optimizer):如 SGD、Adam、RMSprop 等。
-
-
训练超参数(Training Hyperparameters):
-
批量大小(Batch Size):每次更新权重时使用的训练样本数量。
-
迭代次数(Epochs):整个训练数据集被训练的次数。
-
早停(Early Stopping):在训练过程中监控验证集上的性能,当性能不再提升时提前停止训练。
-
学习率调度(Learning Rate Scheduler):动态调整学习率的方法。
-
为什么超参数重要?
超参数对模型的性能有很大的影响,不同的超参数设置可能会导致模型性能的显著差异。合适的超参数可以提高模型的准确性、加速训练过程、避免过拟合等。
如何选择和调整超参数?
-
手动调整:根据经验和试验逐步调整超参数,观察模型性能的变化。
-
网格搜索(Grid Search):在给定的参数范围内穷举所有可能的组合,寻找最佳超参数组合。
-
随机搜索(Random Search):在给定的参数范围内随机选择部分组合进行测试,通常比网格搜索效率更高。
-
贝叶斯优化(Bayesian Optimization):使用贝叶斯理论,通过构建概率模型来选择超参数,能够更高效地找到最优组合。
6.2编写训练函数
1. optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
执行操作:
(a)遍历模型的所有参数: 优化器会遍历模型中的所有参数,包括权重和偏置。
(b)截断反向传播的梯度流: 通过清除梯度,将前一次迭代计算的梯度值设为0,确保本次迭代的梯度计算是从零开始的,不会受到上一次迭代梯度的影响。
(c)清除梯度: 每个参数的梯度值被设为0,上一次的梯度记录被清空,为下一次的反向传播和参数更新做好准备。
2. loss.backward()
PyTorch的反向传播(即tensor.backward()
)是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward()
,所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()
后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()
的话,梯度值将会是None,因此loss.backward()
要写在optimizer.step()
之前。
3. optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()
函数前应先执行loss.backward()
函数来计算梯度。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()
方法产生的。
# 训练循环 def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 训练集的大小,一共60000张图片 num_batches = len(dataloader) # 批次数目,1875(60000/32) train_loss, train_acc = 0, 0 # 初始化训练损失和正确率 for X, y in dataloader: # 获取图片及其标签 X, y = X.to(device), y.to(device) # 计算预测误差 pred = model(X) # 网络输出 loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失 # 反向传播 optimizer.zero_grad() # grad属性归零 loss.backward() # 反向传播 optimizer.step() # 每一步自动更新 # 记录acc与loss train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() train_loss += loss.item() train_acc /= size train_loss /= num_batches return train_acc, train_loss
-
pred.argmax(1)
返回数组pred
在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中pred
是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
-
(pred.argmax(1) == y)
是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
-
.type(torch.float)
是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
-
.sum()
是对数组中的元素求和,计算出预测正确的样本数量。
-
.item()
将求和结果转换为标量值,以便在 Python 中使用或打印。
(pred.argmax(1) == y).type(torch.float).sum().item()
表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。
P7编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test (dataloader, model, loss_fn): size = len(dataloader.dataset) # 测试集的大小,一共10000张图片 num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整) test_loss, test_acc = 0, 0 # 当不进行训练时,停止梯度更新,节省计算内存消耗 with torch.no_grad(): for imgs, target in dataloader: imgs, target = imgs.to(device), target.to(device) # 计算loss target_pred = model(imgs) loss = loss_fn(target_pred, target) test_loss += loss.item() test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item() test_acc /= size test_loss /= num_batches return test_acc, test_loss
P8正式训练
1. model.train()训练模式
model.train()
的作用是启用 Batch Normalization 和 Dropout。
(a)Batch Normalization 是一种用于加速和稳定深度神经网络训练的技术。它在每个小批量数据上计算均值和方差,并用这些统计量对数据进行归一化处理。
(b)Dropout 是一种防止神经网络过拟合的技术。它通过在训练过程中随机“丢弃”一部分神经元,使得网络的某些单元在前向和后向传播过程中被忽略,以达到正则化的效果。
如果模型中有BN
层(Batch Normalization)和Dropout
,需要在训练时添加model.train()
。model.train()
是保证BN层能够用到每一批数据的均值和方差。对于Dropout
,model.train()
是随机取一部分网络连接来训练更新参数。
2. model.eval()评估模式
model.eval()
的作用是不启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()
。model.eval()
是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout
,model.eval()
是利用到了所有网络连接,即不进行随机舍弃神经元。
训练完train样本后,生成的模型model要用来测试样本。在model(test)
之前,需要加上model.eval()
,否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。
总结:
1、Batch Normalization
训练模式(model.train()
):
-
在训练模式下,Batch Normalization 层会计算当前小批量数据的均值和方差,并使用这些值来进行归一化。
-
同时,训练过程中会不断更新一个移动平均的均值和方差,这些移动平均值将在评估模式下使用。
评估模式(model.eval()
):
-
在评估模式下,Batch Normalization 层不会使用当前小批量数据的均值和方差,而是使用训练过程中累积的移动平均均值和方差。
2、Dorpout
训练模式(model.train()
):
-
在训练模式下,Dropout 层会以一定的概率随机丢弃(即将其输出设为零)一部分神经元。
-
这种随机丢弃可以防止模型对训练数据过拟合,提高模型的泛化能力。
评估模式(model.eval()
):
-
在评估模式下,Dropout 层会关闭,即所有神经元都会被激活,不会有丢弃的现象。
-
这确保了在评估和测试时,网络的输出是确定性的,不受随机因素影响。
epochs = 5 train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(epochs): model.train() epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) model.eval() epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) train_acc.append(epoch_train_acc) train_loss.append(epoch_train_loss) test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss) template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}') print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss)) print('Done')
训练结果:
P9结果可视化
import matplotlib.pyplot as plt #隐藏警告 import warnings warnings.filterwarnings("ignore") #忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.rcParams['figure.dpi'] = 100 #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()
遇到的问题解决
问题1、AttributeError: module 'backend_interagg' has no attribute 'FigureCanvas'
问题原因:这个错误信息表示你正在尝试使用 matplotlib 来创建一个图像,但是由于某种原因,matplotlib 无法找到 FigureCanvas
属性。这通常是因为 matplotlib 的后端设置出现了问题。
A: 检查 matplotlib 的后端设置: 在代码的开头部分,尝试手动设置 matplotlib 的后端为 TkAgg
或 Agg
(后者不需要 GUI 环境):
import matplotlib matplotlib.use('TkAgg') # 或者 'Agg'