第P2周:CIFAR10彩色图片识别

第P2周:CIFAR10彩色图片识别

📌第P2周:彩色图片识别📌

  • 难度:小白入门⭐
  • 语言:Python3、Pytorch

🍺 要求:

  1. 学习如何编写一个完整的深度学习程序
  2. 手动推导卷积层与池化层的计算过程

🔔本次的重点在于学会构建CNN网络

🏡 我的环境:

  • 语言环境:Python3.9

  • 编译器:Pycharm

  • 深度学习环境:Pytorch

文章目录:

一、前期准备

1、设置GPU

import torch
import matplotlib.pyplot as plt
import torchvision
import torch.nn as nn

device = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
print(device)

代码输出:

请添加图片描述

2、导入数据

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

(第P1周:Pytorch实现mnist手写数字识别-CSDN博客)这篇博客中详细介绍过DataLoader

# 1. 数据加载
train_ds = torchvision.datasets.CIFAR10('data', train=True,
                                        download=True,
                                        transform=torchvision.transforms.ToTensor())
test_ds = torchvision.datasets.CIFAR10('data', train=False,
                                        download=False,
                                        transform=torchvision.transforms.ToTensor())

# 2. 数据预处理
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
                                       batch_size=batch_size,
                                       shuffle=True)
test_dl  = torch.utils.data.DataLoader(test_ds,
                                       batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
print(imgs.shape)

代码输出:
请添加图片描述

3、数据可视化

使用 enumerate 的优点是,它简化了在遍历序列时获取索引和对应元素的过程,避免了手动维护索引的麻烦。
具体来说,它会返回一个迭代器,每次迭代时会返回一个包含索引和值的元组。

import matplotlib
matplotlib.use('TkAgg')
import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
plt.show() 

代码输出:
请添加图片描述

二、构建简单的CNN网络

卷积层

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

1.torch.nn.Conv2d()详解

函数原型

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’, device=None, dtype=None)

关键参数说明

  • in_channels ( int ) – 输入图像中的通道数

  • out_channels ( int ) – 卷积产生的通道数

  • kernel_size ( int or tuple ) – 卷积核的大小

  • stride ( int or tuple , optional ) – 卷积的步幅。默认值:1

  • padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0

  • dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。

  • groups(int,可选):将输入通道分组成多个子组,每个子组使用一组卷积核来处理。默认值为 1,表示不进行分组卷积。

groups=in_channels 可以实现深度卷积。

  • padding_mode (字符串,可选) – 'zeros’零填充, 'reflect’边缘反射填充, 'replicate’边缘复制填充或’circular’循环填充. 默认:‘zeros’

膨胀卷积解释说明:

在卷积神经网络(CNN)中,卷积层的卷积操作是通过卷积核(kernel)在输入特征图上滑动来完成的。dilation 参数控制卷积核中点的间距,使卷积操作具有扩张特性,从而能够覆盖更大的感受野。理解 dilation 的概念对于理解膨胀卷积(dilated convolution)如何工作是非常重要的。

膨胀卷积(dilated convolution),也称为空洞卷积(atrous convolution),通过在卷积核的元素之间插入空洞(即间隔)来扩展卷积核的覆盖范围,而不会增加计算复杂度。dilation 参数指定了这些空洞的大小。

  • dilation=1(默认值):表示没有扩张,卷积核的点是紧密相邻的,即标准卷积。
  • dilation>1:表示在卷积核的元素之间插入 dilation-1 个空洞,从而扩展卷积核的感受野。

image.png

线性层

2. torch.nn.Linear()详解

函数原型

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明

  • in_features:每个输入样本的大小

  • out_features:每个输出样本的大小

池化层

3. torch.nn.MaxPool2d()详解

函数原型

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明

  • kernel_size:最大的窗口大小

  • stride:窗口的步幅,默认值为kernel_size

  • padding:填充值,默认为0

  • dilation:控制窗口中元素步幅的参数,默认值为1

下面的网络数据shape变化过程为:

3, 32, 32`(输入数据)
-> `64, 30, 30`(经过卷积层1)-> `64, 15, 15`(经过池化层1)
-> `64, 13, 13`(经过卷积层2)-> `64, 6, 6`(经过池化层2)
-> `128, 4, 4`(经过卷积层3) -> `128, 2, 2`(经过池化层3)
-> `512` -> `256` -> `num_classes(10)

请添加图片描述

image.png

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

代码输出:

请添加图片描述

三、训练模型

1、设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2、编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3、编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4、正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

可视化结果:

请添加图片描述请添加图片描述

五、个人总结

第二周的CIFAR10数据集识别是针对于P1周的一个复习,前后实验复现的时间间隔为3天,总体内容复习感觉很良好,增强自信心

同时针对于参考群内同学的博客,也进行尝试用tensorboard进行代替matplotlib展示实验中间过程,目前还在tensorboard摸索阶段,坚持下去。

同时总结一下卷积层,池化层计算还是很有必要的,通过本周学习,已经学会自我计算。
同时针对卷积和池化的计算都有进行相应总结(此博客省略相关内容)
以下是对于未提及到部分卷积计算总结:
卷积层中要保证输入尺寸和输出尺寸大小一致时,公式:

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值