在回归器中,都是训练偏移参数,也就是候选区域到真实区域的偏移。
偏移是四个值的偏移,中心点坐标x, y ,还有宽和高 w, h
也就是候选区域的这四个值 通过四个偏移量 偏移到真实区域的四个值
1 训练阶段
在训练阶段,使用 L2 损失函数来度量模型预测的偏移参数和真实偏移参数的差异
通过最小化这个损失函数,调整模型的参数,使模型能够准确地预测每个类别的偏移参数。
当然,每个类别的不同位置和特征都有不同的偏移参数,这也是训练得到的
2 测试阶段
然后测试阶段,使用训练好的模型根据候选区域的特征来预测偏移参数,应用这些预测的偏移参数来调整每个候选区域的位置和尺寸,使其更接近可能的真实边界框。
在测试环节,同一个类别的不同位置的候选区域,当通过训练好的边界框回归器时,都会得到各自的偏移参数。这些偏移参数是模型根据每个候选区域的特征动态计算出来的,用于调整候选区域的位置和尺寸,使其更贴近可能的真实边界框。