对RCNN中回归器偏移参数的一些理解,之前理解的有点问题,对训练和测试搞得有点糊涂了

本文介绍了在目标检测中,如何通过训练偏移参数的回归器在训练阶段使用L2损失函数优化模型,以及在测试阶段如何根据候选区域特征预测并调整偏移,使边界框更接近真实边界。
摘要由CSDN通过智能技术生成

在回归器中,都是训练偏移参数,也就是候选区域到真实区域的偏移。

偏移是四个值的偏移,中心点坐标x, y ,还有宽和高 w, h

也就是候选区域的这四个值   通过四个偏移量   偏移到真实区域的四个值

1 训练阶段

在训练阶段,使用 L2 损失函数来度量模型预测的偏移参数和真实偏移参数的差异

通过最小化这个损失函数,调整模型的参数,使模型能够准确地预测每个类别的偏移参数。

当然,每个类别的不同位置和特征都有不同的偏移参数,这也是训练得到的

2 测试阶段

然后测试阶段,使用训练好的模型根据候选区域的特征来预测偏移参数,应用这些预测的偏移参数来调整每个候选区域的位置和尺寸,使其更接近可能的真实边界框。

在测试环节,同一个类别的不同位置的候选区域,当通过训练好的边界框回归器时,都会得到各自的偏移参数。这些偏移参数是模型根据每个候选区域的特征动态计算出来的,用于调整候选区域的位置和尺寸,使其更贴近可能的真实边界框。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值