【数字设计与计算机体系结构】2021-10-6-数字设计与计算机体系课程(七)(第二章)

一、 逻辑代数常用公式:

1.1:吸收公式:

  1. 定义: 两乘积项相加,其中一项以另一项为因子,则该项多余,可以消去;
  2. 表示: A + A B = A ( 20 ) A+AB=A (20) A+AB=A(20) (按对偶规则 : A ∙ ( A + B ) = A ( 21 ) A∙(A+B)=A(21) A(A+B)=A(21)
  3. 解释:【AB以A为因子,所以AB是多余的,可以去掉,所以有此等式;】

吸收公式证明: A + A B = A ( 1 + B ) = A ∙ 1 = A ; A+AB=A(1+B)=A∙1=A; A+AB=A(1+B)=A1=A

在这里插入图片描述

1.2:并项公式:

  1. 定义: 两个乘积项相加,如两项的一个因子相等,另一个因子互补,则互补因子可以消除,两项合并成一项。
  2. 表示: A B + AB+ AB+ A ‾ \overline{A} A B = B ( 22 ) B=B (22) B=B(22) (按对偶规则 ( A + B ) ∙ ( (A+B)∙( (A+B)( A ‾ \overline{A} A + B ) = B ( 23 ) ) +B)=B (23)) +B)=B(23)

并项公式证明: A B AB AB + + + A ‾ \overline{A} A B = ( A + B=(A+ B=(A+ A ‾ \overline{A} A) ∙ B = 1 ∙ B = B ; ∙B=1∙B=B; B=1B=B
在这里插入图片描述

1.3:消冗余因子公式:

  1. 定义: 两乘积项相加,其中一项取反后作为另一项的因子,则该因子多余,可以消去。
  2. 表示: A + A+ A+ A ‾ \overline{A} A B B B = A + B =A+B =A+B ( 24 ) (24) (24) 按 对 偶 规 则 A ∙ ( 按对偶规则 A∙( A( A ‾ \overline{A} A + B ) +B) +B) = A ∙ B ( 25 ) =A∙B (25) =AB(25)
  3. 证明:
    A + A+ A+ A ‾ \overline{A} A B B B = = = ( A + (A+ (A+ A ‾ \overline{A} A) ∙ ∙ ( A + B ) (A+B) (A+B) ( 分 配 律 ( 6 ) ) (分配律(6)) (6
    = 1 ∙ ( A + B ) ( 互 补 律 ( 12 ) ) =1∙(A+B) (互补律(12)) =1(A+B)(12
    = A + B ( 自 等 律 ( 9 ) ) =A+B (自等律(9)) =A+B(9

1.4:消冗余项公式:

  1. 定义: 若两个乘积项分别包含互补的两个因子,而这两个乘积项的其余因子组成第三项时,则第三项多余,可以消去;
  2. 表示: A B + AB+ AB+ A ‾ \overline{A} A C C C + + + B C BC BC = = = A B AB AB + + + A ‾ \overline{A} A C ( 26 ) C (26) C(26)
    按对偶规则: ( A + B ) ∙ ( (A+B)∙( (A+B)( A ‾ \overline{A} A + + + C C C ) ∙ ( )∙( )( B + C B+C B+C ) = ( )=( )=( A + B A+B A+B ) ∙ ( )∙( )( A ‾ \overline{A} A + C ) ( 27 ) +C) (27) +C)(27);

二、逻辑函数及描述方法:

2.1: 逻辑函数:

  • 逻辑:(哲学的范畴)指事物的前因和后果所遵循的规律。
  • 逻辑变量: 描述一个逻辑问题所用的变量;
    输入变量(表示条件)、输出变量(表示结果)。
  • 逻辑函数(逻辑表达式): 用来描述输入变量和输出变量之间的逻辑关系;即按某种逻辑关系对逻辑变量A、B、C等进行有限次逻辑运算,所得的逻辑表达式 F = f ( A , B , C , ⋯ ) F=f(A,B,C,⋯) F=f(A,B,C,)

数电的逻辑关系是一个二值逻辑关系,相对于一个逻辑事件,在任意时刻所表现的特征(逻辑状态)只有两个。即逻辑“真”,用“1”表示;逻辑“假”,用“0”表示。

2.2:逻辑函数的描述方法:

2.2.1:逻辑表达式:

2.2.1.1:最小项:
  1. 最小项的特点:
  • 三变量(A、B、C)最小项有:
    A ‾ \overline{A} A B ‾ \overline{B} B C ‾ \overline{C} C A ‾ \overline{A} A B ‾ \overline{B} B C C C A ‾ \overline{A} A B B B C ‾ \overline{C} C A ‾ \overline{A} A B B B C C C A A A B ‾ \overline{B} B C ‾ \overline{C} C A A A B ‾ \overline{B} B C C C A A A B B B C ‾ \overline{C} C A A A B B B C C C
  • 两个最小项只有一个变量互为反变量,其他变量都相同,则这两个最小项具有相邻性
    如: A ‾ \overline{A} A B ‾ \overline{B} B C ‾ \overline{C} C A A A B ‾ \overline{B} B C ‾ \overline{C} C A A A B ‾ \overline{B} B C C C A A A B B B C C C
  1. 最小项的性质:
  • 在输入变量的任何取值下必有且只有一个最小项的值为1;

  • 全体最小项之和为1;

  • 任意两个最小项的乘积为0;

  • 具有相邻性的两个最小项之和可以合并成一项并消去一对因子(并项法);

  • 对于n变量的函数F的标准与-或表达式(最小项表达式)为

    F = ∑ 0 2 n − 1 f i m i F=\sum_{0}^{2^n-1} f_im_i F=02n1fimi;

  • 任何一个逻辑函数都能展开为其最小项之和形式(最小项表达式)。

  • 在这里插入图片描述

2.2.1.2:最大项
  1. 最大项的特点:
  • 三变量(A、B、C)最大项有:
    A + B + C A+B+C A+B+C A + B + A+B+ A+B+ C ‾ \overline{C} C A + A+ A+ B ‾ \overline{B} B + C +C +C A + A+ A+ B ‾ \overline{B} B + + + C ‾ \overline{C} C A ‾ \overline{A} A + B + C +B+C +B+C A ‾ \overline{A} A + B + +B+ +B+ C ‾ \overline{C} C A ‾ \overline{A} A + + + B ‾ \overline{B} B + C +C +C A ‾ \overline{A} A + + + B ‾ \overline{B} B + + + C ‾ \overline{C} C;
  1. 最大项的性质:
  • 在输入变量的任何取值下必有且只有一个最大项的值为0;
  • 全体最大项之积为0;
  • 任意两个最大项之和为1;
  • 只有一个变量不同的两个最大项的乘积等于各相同变量之和
  • 最大项和最小项之间的关系
    Mi= m i ‾ \overline{m_i} mi;

2.3:逻辑函数的描述方法:

2.3.1:逻辑表达式的常见形式:

**三人表决器:**两名或两名以上认可,判定成功;否则,判定失败;(下面是三人表决器的几种表现方式)

  • 最小表达式: F = f ( A , B , C ) = F=f(A,B,C)= F=f(A,B,C)= A ‾ \overline{A} A B B B C C C + + + A A A B ‾ \overline{B} B C C C + + + A A A B B B C ‾ \overline{C} C + + + A A A B B B C C C
  • 与或式: F = A B + B C + A C F=AB+BC+AC F=AB+BC+AC
  • 或与式: F = ( A + B ) ( B + C ) ( A + C ) F=(A+B)(B+C)(A+C) F=(A+B)(B+C)(A+C)
  • 与或非式: F = F= F= F ‾ 的 非 \overline{F}的非 F = ( =( =( A ‾ \overline{A} A B ‾ \overline{B} B + + + B ‾ \overline{B} B C ‾ \overline{C} C + + + A ‾ \overline{A} A C ‾ \overline{C} C)的非
  • 与非-与非式: F = ( F=( F=( A ‾ \overline{A} A B ‾ \overline{B} B ∗ * A ‾ \overline{A} A C ‾ \overline{C} C)的非(与三人表决器无关)

在这里插入图片描述

2.3.2:卡诺图
  1. 定义: 将函数输入变量的取值组合的二进制数作为函数值的坐标;
    如果将3变量逻辑函数的坐标分成(AB,C)或(A,BC)两维,并按水平和垂直两个方向排列形成卡诺图;
    例:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    【对比卡诺图和格雷码可以很轻松的发现一件事情(谜语人滚出哥谭),就是卡诺图的坐标和格雷码一样是循环码】
    【这一部分暂时就先到这里,但是这里只是基本规则的介绍,了解了不等于掌握了,还得每个公式都用用,(有点像游戏训练hhhhh)】
    【淦,刚刚漏写了一段】
2.3.3:卡诺图和逻辑函数的关系

逻辑函数最小项表达式中含有的各个最小项(也就是真值表中函数值为1的那些行的最小项),在卡诺图相应小方格中填“1”,其余则填“0”或不填就得到对应于该函数的卡诺图。
在这里插入图片描述
比如这里,三个最小项取值分别为1的地方填1,其他地方填0或者不填(我倾向于不填)

【刚刚在这里的时候有种很强烈的感觉就是,定义说的再好有时候还是不如结合具体例子说起来直观有效,实操一下很多东西就懂了】

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值