python的numpy数组的切片

Python中的X[:,m:n]和X[1,:]   *******************【相当于选对象

import numpy as np
X = np.array([[0,1,2,3],[4,5,6,7],[8,9,10,11],[12,13,14,15]])  # 定义二维数组
print(X[:,0])  # 取数组X二维数组中每一个的0号下标对应的值 [0 4 8 12]
print(X[1,:])  # 取数组X一维数组中的第一组全部数值  [0 1 2 3]
print(X[:,1:3])  #取所有数据的第1列到3-1列数据,从第0列开始计算,结果如下:
'''
[[1 2]
 [5 6]
 [9 10]
 [13 14]]
'''


X[:,0]是numpy中数组的一种写法,表示对一个二维数组,取该二维数组第一维中的所有数据【选中所有的二维数组底下的对象】,第二维中取第0个数据【选中一维数组中的对象】,直观来说,X[:,0]就是取所有行的第0个数据, X[:,1] 就是取所有行的第1个数据。

X[n,:]是取第1维中下标为n的元素的所有值。

X[:,  m:n],即取所有数据的第m到n-1列数据,含左不含右
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Song ZiJian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值