初探统计物理:从熵到三个系统

写在前面

本文定位是初学者的学习笔记。目的在于建立从热力学到量子力学的桥梁,会很多地涉及热力学部分,不涉及量子力学部分。内容以概念和推导为主。

熵与玻尔兹曼

熵指向了热量传递地为微观过程。统计物理的基石很大来自于玻尔兹曼对熵的假设和对微观实际的理解,系统测量的宏观量是微观状态在可承受扰动下的观测值,而微观状态遵循着概率的原则不停地浮动。

于是有
U ˉ = ∑ i P i E i d U ˉ = ∑ i d P i ⋅ E i + P i ⋅ d E i \begin{aligned} \bar{U} &= \sum_i P_i E_i\\ \mathrm{d} \bar{U} &= \sum_i \mathrm{d}P_i\cdot E_i + P_i \cdot \mathrm{d} E_i \end{aligned} UˉdUˉ=iPiEi=idPiEi+PidEi

在热力学中,我们有
d U = δ Q + δ W \mathrm{d} U = \delta Q + \delta W dU=δQ+δW
不加解释地,猜测其中的对应关系,我们给出
δ Q = ∑ i E i d P i δ W = ∑ i P i d E i \delta Q = \sum_i E_i \mathrm{d} P_i\\ \delta W = \sum_i P_i \mathrm{d} E_i δQ=iEidPiδW=iPidEi
在准静态平衡过程中,热量的传递造成能级概率的分布改变,而功造成能级改变。在实际情况中,概率分布和能级都会随着系统状态的改变而改变,只有在准静态过程中才能将两者分开,将“热”和“功”分开。

宏观观测量是微观状态的分布决定的,概率的概念与熵的概念在此处朝着一个方向前进,玻尔兹曼给出了这个重要的公式
S = k B ln ⁡ ( W ) S = k_B \ln(W) S=kBln(W)
“数”基本事件是导出概率的重要一步,当把微观状态而不是宏观观测作为基本事件时,熵在这个公式中联系了宏观和微观两个世界。

玻尔兹曼系统

求W

在波尔兹曼系统中,粒子可分,每个状态粒子数不受限制。之所有有玻尔兹曼系统、玻色系统和费米系统的区别,在于“基本事件”的决定方法不同,复合事件的概率就不同,而得出的物理量之间的关系就会不同。

先以最基本的玻尔兹曼系统为例,有
W = m ! n 1 ! n 2 ! ⋯ S t = k B ∑ ( ln ⁡ m ! − ln ⁡ n 1 ! − ⋯   ) ≈ k B ∑ ( m ln ⁡ m − n 1 ln ⁡ n 1 − ⋯   ) = − k B m ∑ i n i m ln ⁡ n i m \begin{aligned} W &= \frac{m!}{n_1!n_2!\cdots}\\ S_t &= k_B\sum(\ln m! - \ln n_1! - \cdots)\\ &\approx k_B \sum (m\ln m - n_1\ln n_1 - \cdots)\\ &= -k_B m \sum_i \frac{n_i}{m}\ln \frac{n_i}{m} \end{aligned} WSt=n1!n2!m!=kB(lnm!lnn1!)kB(mlnmn1lnn1)=kBmimnilnmni

n i / m {n_i}/{m} ni/m即是状态 i i i 出现的概率 p i p_i pi,进而有

S t = − k B m ∑ i p i ln ⁡ p i S = − k B ∑ p i ln ⁡ p i S_t = -k_B m \sum_i p_i\ln p_i\\ S = -k_B \sum p_i \ln p_i St=kBmipilnpiS=kBpilnpi

求P

我们还可以带入热力学的公式
d U = T d S − P d V d S = 1 T d U + V P d V ( ∂ S ∂ U ) V = 1 T k B ∂ ln ⁡ W ∂ U = 1 T \begin{aligned} \mathrm{d} U &= T\mathrm{d}S - P \mathrm{d}V\\ \mathrm{d}S &= \frac1T\mathrm{d}U + \frac{V}{P}\mathrm{d}V\\ (\frac{\partial S}{\partial U})_V &= \frac1T\\ k_B \frac{\partial \ln W}{\partial U} &= \frac1T \end{aligned} dUdS(US)VkBUlnW=TdSPdV=T1dU+PVdV=T1=T1
两个孤立系统,一个系统A与热池B达到热力平衡时,有 W A B = W A × W B W_{AB} = W_A \times W_B WAB=WA×WB,而将系统A的状态束缚在 E i E_i Ei时,有 W A B = 1 × W B ( U T − E i ) W_{AB} = 1 \times W_B(U_T - E_i) WAB=1×WB(UTEi)

对于 W B W_B WB, 有
k B ∂ ln ⁡ W ∂ U = 1 T W B = γ e U T − E i k B T \begin{aligned} k_B \frac{\partial \ln W}{\partial U} = \frac1T\\ W_B =\gamma e^{\frac{U_T - E_i}{k_BT}} \end{aligned} kBUlnW=T1WB=γekBTUTEi

于是有
W = ∑ i 1 × γ e U T − E i k B T p i = W i W = exp ⁡ ( − E i / k B T ) ∑ j exp ⁡ ( − E j / k B T ) W = \sum_i 1\times \gamma e^{\frac{U_T - E_i}{k_BT}}\\ p_i = \frac{W_i}{W} = \frac{\exp (-E_i/k_BT)}{\sum_j \exp (-E_j/k_BT)} W=i1×γekBTUTEipi=WWi=jexp(Ej/kBT)exp(Ei/kBT)

状态量的导出

有了微观状态概率对熵的关系和微观状态内能对微观状态概率的关系,我们可以导出宏观的热力学参量。

首先不妨定义 Z = ∑ j exp ⁡ ( − E j / k B T ) Z = \sum_j \exp (-E_j/k_BT) Z=jexp(Ej/kBT)
S = − k B ∑ i p i ( − E i / k B T − ln ⁡ Z ) = ∑ p i E i T + k B ln ⁡ Z = U ˉ T + k B ln ⁡ Z \begin{aligned} S &= -k_B\sum_i p_i (-E_i/k_BT - \ln Z)\\ &= \frac{\sum p_i E_i}{T} + k_B\ln Z\\ &= \frac{\bar{U}}{T} + k_B\ln Z \end{aligned} S=kBipi(Ei/kBTlnZ)=TpiEi+kBlnZ=TUˉ+kBlnZ

由于 S = ( U − F ) / T S = (U-F)/T S=(UF)/T,继而有
F = − k B T ln ⁡ Z F = -k_BT\ln Z F=kBTlnZ

而根据热力学公式有 S = − ( ∂ F ∂ T ) v S=-(\frac{\partial F}{\partial T})_v S=(TF)v,有
S = k B [ ln ⁡ Z + T ( ∂ ln ⁡ Z ∂ T ) v ] S = k_B[\ln Z+T(\frac{\partial \ln Z}{\partial T})_v] S=kB[lnZ+T(TlnZ)v]

P = − ( ∂ F ∂ V ) T P=-(\frac{\partial F}{\partial V})_T P=(VF)T,有
P = k B T ( ∂ ln ⁡ Z ∂ V ) T ] P = k_BT(\frac{\partial \ln Z}{\partial V})_T] P=kBT(VlnZ)T]
U ˉ = T S + F \bar{U} = TS + F Uˉ=TS+F,有
U ˉ = k B T 2 ( ∂ ln ⁡ Z ∂ T ) v \bar{U} = k_BT^2(\frac{\partial \ln Z}{\partial T})_v Uˉ=kBT2(TlnZ)v
等等。

分配函数Z

从以上计算过程中,Z似乎只是用来归一化概率所使用的系数。然而Z确实有着其物理意义,尽管目前尚不能阐释清楚。

在通过公式 k B ∂ ln ⁡ W ∂ U = 1 T k_B \frac{\partial \ln W}{\partial U} = \frac1T kBUlnW=T1导出 W W W的表达式时,积分中不可避免的我们有一个未定的常数 γ \gamma γ,纵然我们可以设置一个基态,然后将所有可获取的状态 W W W与基态做比消去 γ \gamma γ获得可获取状态的概率的相对大小,作为代价我们则要获取 Z Z Z来使得概率归一化。

在可数的、可以描述完 W的系统,可以通过以上过程获得 W W W,而对于包含连续变量的体系,获得分配函数Z需要额外的处理。

Z = 1 h ∫ − ∞ − ∞ ∫ − ∞ − ∞ e − E ( x , p ) k B T d x d p Z =\frac1h \int_{-\infty}^{-\infty} \int_{-\infty}^{-\infty}e^{\frac{-E(x,p)}{k_BT}}\mathrm{d}x\mathrm{d} p Z=h1ekBTE(x,p)dxdp

既然在离散情况下的处理是相加,为何在连续情形下完成积分后还必须除以h呢?

不完全正确(或者完全不正确)的解释是,这个常数来自于经典情况下对连续变量的处理能力有限,必须引入相空间的概念以避免无限分割连续变量以确定微观状态而造成无尽的熵值。事实是微观状态不连续,而宏观变量连续,对于使用的位置和动量作为参数的能量,需要用h进一步对结果获取离散化情形的等同效果。

玻色系统

待补

费米系统

待补

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值