数学-先验概率和后验概率和一系列概率公式理解

自用。

一. 先验概率和后验概率理解

这两个都是描述某个结论H发生的概率。

  • 假如我当前什么证据都没有,就根据之前的人生经历,思索下说P(H)=0.99,认为结论H发生的可能高达99%,那这时的P(H)就是先验概率。
    为什么呢?先验嘛,事先验证过,我虽然不知道当前发生了什么,但我可以用之前的事实来推测结论H发生的概率,也别管对不对。
  • 然后我通过试验有证据了,用这个证据E证明,结论H发生的概率为1%,即P(H|E)=0.01。那么这时的P(H|E)就是后验概率。
    为什么呢?后验,后来验证过,我拿着最新的证据E,实实在在的证明了结论H发生的概率

然后我们带着这个理解去看看公式。

二. 概率公式

提示:证据可以作为结论,结论可以作为证据。它们都是事件,看你怎么用,就怎么称呼。变量名也是,叫A叫H都可以,实质作用没变

1. 条件概率公式

1.1 公式 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B)=\frac{P(A∩B)}{P(B)} P(AB)=P(B)P(AB)
P(A|B):在B发生的情况下A发生的概率。
P(A∩B):A,B都发生的概率。
P(B):B发生的概率。

先摆…图,讲究的话将就一下

在这里插入图片描述

1.2 理解

简单理解一下:众所周知,上面A是A发生的区域,B是B发生的区域,A∩B是A和B的交集,是A发生,B也发生的区域。那么求A区域落在B区域的比例是在求什么,其实就是在求B发生的情况下A发生的概率啦,即条件概率P(A|B)。

然后看条件概率公式,P(A|B)在之前理解时不是后验概率,怎么到这个是条件概率了?
错误理解:那这得根据当前的语境(不是H,E换成A,B啊),确定它叫什么。两者从不同角度描述了概率的类型。
正确理解:后验概率是一种被赋予了现实意义的条件概率。把A,B换成H,E。
P ( H ∣ E ) = P ( H ∩ E ) P ( E ) P(H|E)=\frac {P(H∩E)}{P(E)} P(HE)=P(E)P(HE)
之前说到,我拿着最新的证据E,实实在在的证明了结论H发生的概率。

这个过程说明了什么呢?我拿的是E,不是其他的证据,去确定结论H的概率,也就是说概率的确定是有条件的,这个条件就是我拿的E、、、所以后验概率是一种被赋予了现实意义的条件概率。自然,后验概率可以表示成P(H|E)。

这个过程发生了什么呢,摆…图

在这里插入图片描述

左图,试验中,我们可以记录钦定的证据E的概率,即P(E),毕竟证据不止证据E呢(统称~E)
右图,我们可以记录钦定的结论H和证据E都发生的概率,即P(H∩E),毕竟还有三种情况呢( ~H∩E, H∩~E, ~ H∩~E)。

可以看见,P(E)和P(H∩E)不在一个样本空间,那么求其比例就可以重新组织基本事件为:E发生H发生,E发生H不发生。把P(E)当作总体,然后求得P(H∩E)占总体的比重。这个比重就是在证据E的基础上有多大可能推出结论H的概率,即P(H|E)。(用前面的话说,我拿着证据E,来确定结论H发生的概率,所以∩E)。

然后我们可以知道P(H|E)=P(H∩E)/P(E)是合理的。
然后可以通过这个公式知二求一

1.2.1 求 条 件 概 率 : P ( H ∣ E ) = P ( H ∩ E ) P ( H ∩ E ) + P ( ¬ H ∩ E ) = P ( H ∩ E ) P ( E ) 求条件概率 :P(H|E)=\frac{P(H∩E)}{P(H∩E)+P(\neg H∩E)}=\frac{P(H∩E)}{P(E)} P(HE)=P(HE)+P(¬HE)P(HE)=P(E)P(HE)
1.2.2 求 事 件 的 交 集 概 率 : P ( H ∩ E ) = P ( E ) P ( H ∣ E ) 求事件的交集概率: P(H∩E)=P(E)P(H|E) P(HE)=P(E)P(HE)
1.2.3 求 事 件 的 概 率 : P ( E ) = P ( H ∩ E ) P ( H ∣ E ) 求事件的概率:P(E)=\frac{P(H∩E)}{P(H|E)} P(E)=P(HE)P(HE)

虽然只是形式的变化,在实际的运用中赋予了不同的含义。
(如果用之前比重的概念就会很好理解。P(E)是总面积,P(H∩E)是实际面积,P(H|E)是比重。理解之后还能转换回来=_=)

对了,有人会犯这个错误:把P(H∩E)看作P(H|E)。仔细想想,一个是H,E同时发生的概率,一个是H在E上发生的概率,两者分母不一样!
右图,我们用面积来算算两者, P ( H ∩ E ) = S ( H ∩ E ) S ( H ∩ E ) + S ( H ∩ ¬ E ) + S ( ¬ H ∩ E ) + S ( ¬ H ∩ ¬ E ) P(H∩E)=\frac{S(H∩E)}{S(H∩E)+S(H∩\neg E)+S(\neg H∩E)+S(\neg H∩\neg E)} P(HE)=S(HE)+S(H¬E)+S(¬HE)+S(¬H¬E)S(HE) P ( H ∣ E ) = S ( H ∩ E ) S ( H ∩ E ) + S ( ¬ H ∩ E ) = S ( H ∩ E ) S ( E ) P(H|E)=\frac{S(H∩E)}{S(H∩E)+S(\neg H∩E)}=\frac{S(H∩E)}{S(E)} P(HE)=S(HE)+S(¬HE)S(HE)=S(E)S(HE)

显然不一样、、、

而且易知P(H|E)和P(E|H)也是不一样的、、、
(前者,用前面的话说,我拿着证据E,来确定结论H发生的概率,所以∩E)
(后者,用前面的话说,我拿着证据H,来确定结论E发生的概率,所以∩H)

P ( E ∣ H ) = S ( H ∩ E ) S ( H ∩ E ) + S ( H ∩ ¬ E ) = S ( H ∩ E ) S ( H ) P(E|H)=\frac{S(H∩E)}{S(H∩E)+S(H∩\neg E)}=\frac{S(H∩E)}{S(H)} P(EH)=S(HE)+S(H¬E)S(HE)=S(H)S(HE)

2. 全概率公式

2.1 公式 P ( H ) = P ( E 1 ) P ( H ∣ E 1 ) + . . . + P ( E n ) P ( H ∣ E n ) = ∑ i = 1 n P ( E i ) P ( H ∣ E i ) P(H)=P(E_{1})P(H|E_{1})+...+P(E_{n})P(H|E_{n})=\sum_{i=1}^{n} P(E_{i})P(H|E_{i}) P(H)=P(E1)P(HE1)+...+P(En)P(HEn)=i=1nP(Ei)P(HEi)
P(Ei):P(Ei)>0
P(Ei)之和:1
i≠j:Ei≠Ej

这个公式用于求一个结论H的概率(朴实无华)。
它由1.2.2扩展而来: 求 事 件 的 交 集 概 率 : P ( H ∩ E ) = P ( E ) P ( H ∣ E ) 求事件的交集概率: P(H∩E)=P(E)P(H|E) P(HE)=P(E)P(HE)

(如果用之前比重的概念就会很好理解。P(E)是总面积,P(H∩E)是实际面积,P(H|E)是实际比重。理解之后还能转换回来=_=)

2.1 公式理解

这个公式精髓在于,枚举了所有可能支持结论H的的证据Ei,P(Ei)>0。
P(Ei)之和为1 ,为全集U,所以全概率公式左边其实是 P ( H ) = P ( H ∩ U ) = P ( H ∩ ( E 1 ∪ E 2 ∪ . . . ∪ E n ) ) = P(H)=P(H∩U)=P(H∩(E_{1}∪E_{2}∪...∪E_{n}))= P(H)=P(HU)=P(H(E1E2...En))=
P ( ( H ∩ E 1 ) ∪ ( H ∩ E 2 ) ∪ . . . ∪ ( H ∩ E n ) ) P((H∩E_{1})∪(H∩E_{2})∪...∪(H∩E_{n})) P((HE1)(HE2)...(HEn))
因为 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A∪B)=P(A)+P(B)-P(A∩B) P(AB)=P(A)+P(B)P(AB)
所以 P ( ( H ∩ E 1 ) ∪ ( H ∩ E 2 ) ) = P ( H ∩ E 1 ) + P ( H ∩ E 2 ) − P ( H ∩ E 1 ∩ H ∩ E 2 ) P((H∩E_{1})∪(H∩E_{2}))=P(H∩E_{1})+P(H∩E_{2})-P(H∩E_{1}∩H∩E_{2}) P((HE1)(HE2))=P(HE1)+P(HE2)P(HE1HE2)
E i ≠ E j = > E i ∩ E j = ϕ Ei≠Ej=>Ei∩Ej=\phi Ei=Ej=>EiEj=ϕ
所以 P ( ( H ∩ E 1 ) ∪ ( H ∩ E 2 ) ) = P ( H ∩ E 1 ) + P ( H ∩ E 2 ) P((H∩E_{1})∪(H∩E_{2}))=P(H∩E_{1})+P(H∩E_{2}) P((HE1)(HE2))=P(HE1)+P(HE2)
推广到n就是全概率公式了。

2.2 几何理解

P(U)是总面积,P(Ei)是分面积,和为总面积,P(H|Ei)是分面积比重,P(Ei)P(H|Ei)得到实际分面积,从i加到n,就求出了实际总分面积P(H|U)。这里的分,是指分给H的面积。

总之,相当于把总面积U分成了n份,在每一份上求分给H的面积,累加起来就是总面积U分给H的面积。

3. 贝叶斯公式

3.1 公式 P ( H ∣ E ) = P ( H ) P ( E ∣ H ) P ( E ) P(H|E)=\frac{P(H)P(E|H)}{P(E)} P(HE)=P(E)P(H)P(EH)
P(H|E):在E发生的情况下H发生的概率,也叫后验概率。
P(E|H):在H发生的情况下E发生的概率。
P(H):H发生的概率,也叫先验概率。
P(E):E发生的概率。

终于到介绍先验概率和后验概率的时候(忘记了回去看看)。
这个公式用于证据和结论的互推(理解互推)。
它由1.2.1,1.2.2扩展而来:
求 条 件 概 率 : P ( H ∣ E ) = P ( H ∩ E ) P ( E ) 求条件概率 :P(H|E)=\frac{P(H∩E)}{P(E)} P(HE)=P(E)P(HE)
求 事 件 的 交 集 概 率 : 求事件的交集概率: P ( H ∩ E ) = P ( E ∩ H ) = P ( H ) P ( E ∣ H ) P(H∩E)=P(E∩H)=P(H)P(E|H) P(HE)=P(EH)=P(H)P(EH)
(如果用之前比重的概念就会很好理解。P(E)是总面积,P(H∩E)是实际面积,P(H|E)是实际比重。理解之后还能转换回来=_=)

3.1 公式理解

1.2.2式带入1.2.1式即可。我更愿意称贝叶斯公式为条件概率公式的灵活变形,而不是某些定式的东西,还是知二求一的范围。

3.2 几何理解

P(H)是H的总面积,P(E|H)是H分给E的面积比重,P(H)P(E|H)相乘就是H分给E的面积,而这面积是两者共有的,所以也是E分给H的面积,它与E的总面积P(E)的比例就是E分给H的面积比重P(H|E)。

3.3 应用
3.3.1 主观Bayes推理

接下来混合着理解

3.3.1.1 知识的不确定性表示

i f E t h e n ( L S , L N ) H if\quad E\quad then\quad (LS,LN)\quad H ifEthen(LS,LN)H
其 中 L S = P ( E ∣ H ) P ( E ∣ ¬ H ) L N = 1 − P ( E ∣ H ) 1 − P ( E ∣ ¬ H ) = P ( ¬ E ∣ H ) P ( ¬ E ∣ ¬ H ) 其中LS=\frac{P(E|H)}{P(E|\neg H)}\quad LN=\frac{1-P(E|H)}{1-P(E|\neg H)}=\frac{P(\neg E|H)}{P(\neg E|\neg H)} LS=P(E¬H)P(EH)LN=1P(E¬H)1P(EH)=P(¬E¬H)P(¬EH)
上面就是一条知识,描述在证据E的支持下H的发生情况。
看到那个if then没,不是有一句:人生是由无数选择构成的。
比如你希望条件是吃饭,结果是快乐。
如果某人的知识表示为:if 吃饭 then (∞,0)快乐
那么你有一天看他(她(它(祂)))吃饭了,那么你可以以接近∞的把握说:这人快乐。

知识就是一种选择性的认同。当然你的选择可能是错的(?),所以有不确定性。
这个不确定性就用LS,LN描述。
LS是该知识的充分性度量,LN是该知识的必要性度量。

先看LS,它是P(E|H)与P(E|~H)的比值,由前面可知,P(E|H)是E占H的面积比重, P(E|~H)是E占 ~H的面积比重。当比值越大,E占H的面积比重越大,E占 ~H的面积比重越小,意味着E更愿意出现在H,去支持H。比值越大,E越充分支持。

如果某人的知识表示为:if 吃饭 then (∞,0)快乐

举个例子,LS从0->∞,
当LS=0,E只出现在 ~H,说明:(拿着证据E)一定推不出 吃饭使我快乐。
当0<LS<1,E较多出现在 ~H,说明:小概率推出 吃饭使我快乐。
当LS=1,E出现在H和 ~H次数一样多,说明:吃饭和我的快乐没关系。
当LS>1,E较多出现在H,说明:大概率推出 吃饭使我快乐。
当LS->∞,E只出现在H,说明:一定推出 吃饭使我快乐。

可见,当LS从0->∞,通过E推出H成立的可能性越大。

对于LN,
它是P( ~E|H)与P( ~E| ~H)的比值,比值越大,意味着 ~E越愿意出现在 H,
同上理,

当LN从0->∞,通过 ~E推出H成立的可能性越大。
注意一个证据不能同时支持和反对一个结论(而我们一般是通过E推H)。
所以通过E推出H成立的可能性越小。

意味着,反过来,当LN从∞->0时,通过E推出H成立的可能性越大。E在H占的位置越来越重要,说明H成立越需要E的支持,E显得越来越必要。

如果某人的知识表示为:if 吃饭 then (∞,0)快乐

再看这句话,可以想象成坐标轴。
充分性和必要性可以看作向不同的方向趋近。
在这里插入图片描述
LS->∞,E越是充分。
LN->0,E越是必要。

再来看看LS,LN怎么来的。
E 证 明 H 的 概 率 : P ( H ∣ E ) = P ( E ∣ H ) P ( H ) P ( E ) E证明H的概率:P(H|E)=\frac{P(E|H)P(H)}{P(E)} EHP(HE)=P(E)P(EH)P(H)
E 证 明 ¬ H 的 概 率 : P ( ¬ H ∣ E ) = P ( E ∣ ¬ H ) P ( ¬ H ) P ( E ) E证明\neg H的概率:P(\neg H|E)=\frac{P(E|\neg H)P(\neg H)}{P(E)} E¬HP(¬HE)=P(E)P(E¬H)P(¬H)
两式相除得:
P ( H ∣ E ) P ( ¬ H ∣ E ) = P ( E ∣ H ) P ( E ∣ ¬ H ) × P ( H ) P ( ¬ H ) \frac{P(H|E)}{P(\neg H|E)}=\frac{P(E|H)}{P(E|\neg H)}\times\frac{P(H)}{P(\neg H)} P(¬HE)P(HE)=P(E¬H)P(EH)×P(¬H)P(H)
中间即LS。
LN同理,将E改为~E即可。
为了简便,引入几率函数(为了简便!!!几率和概率很好转换的)
O ( X ) = P ( X ) 1 − P ( X ) = P ( X ) P ( ¬ X ) O(X)=\frac{P(X)}{1-P( X)}=\frac{P(X)}{P(\neg X)} O(X)=1P(X)P(X)=P(¬X)P(X)
几率也好理解,一件事发生比上它不发生,取∞说明一定发生,取0说明一定不发生。
那么相除的式子简化为:
O ( H ∣ E ) = L S × O ( H ) O(H|E)=LS\times O(H) O(HE)=LS×O(H)

这也好理解,先看LS,即看E对H的支持程度,再看O(H),即看H自己的努力程度。
当LS<1时,O(H|E)<O(H),E不支持,还拖你下水。
当LS=1时,O(H|E)=O(H),E是路人,全靠自己努力。
当LS>1时,O(H|E)>O(H),E支持你,帮你做的更好。

同理,可得到关于LN的式子,
O ( H ∣ ¬ E ) = L N × O ( H ) O(H|\neg E)=LN\times O(H) O(H¬E)=LN×O(H)
先看LN,即看 ~E对H的支持程度,再看O(H),即看H自己的努力程度。
(这里写的不是看E对H的重要程度,因为那样意味着LN越小越重要,不直观)
当LN<1时,O(H|~E)<O(H), ~E不支持,还拖你下水。
当LN=1时,O(H|~E)=O(H), ~E是路人,全靠自己努力。
当LN>1时,O(H|~E)>O(H), ~E支持你,帮你做的更好。

3.3.1.2 证据的不确定性表示

证据E的不确定性可以用概率或者几率表示。
P ( E ) 、 O ( X ) = P ( X ) ¬ P ( X ) P(E)、O(X)=\frac{P(X)}{\neg P(X)} P(E)O(X)=¬P(X)P(X)

无论证据有多么复杂,都可以化为合取和析取的形式。

这里引入观察(试验)的概念,对于现实世界来说,我们只能通过 观察 这个事件去推测一件事件发生的概率。他是推理的基础和起点。比如P(S)是我们的预设值,即先验概率,而P(E|S),是在观察的基础上得到E发生的概率,即后验概率,我们把P(S)更新为P(E|S),就可以由观察修改后的E概率去进行推理和修改网络,这样现实就和我们的推理联系起来了。它是基于现实的,具有现实意义。(还记得开头吧…)

假如每个单一证据Ei在观察S下概率为P(Ei|S)
当证据是合取的形式:
E = E 1 ∩ E 2 ∩ . . . ∩ E n E=E1\quad ∩\quad E2\quad ∩\quad ... \quad ∩\quad En E=E1E2...En
组合证据的概率为
P ( E ∣ S ) = min ⁡ P ( E i ∣ S ) P(E|S)=\min{P(E_{i}|S)} P(ES)=minP(EiS)
为什么取最小值?首先看取值是为了什么,是为了确定证据组合起来的概率,是要取出可以代表这些单一证据的概率,相当于选主席啦!

主席一般指位居主要席位或主人席位的人,现在多指会议主持人或机构、委员会内的领 导人。

从释义可见重要,主席就是领导,全靠领导指方向,定结论,主席代表了千千万万的据意。

正好是合取,合取嘛,都要照顾到,一个不能落下,所以你得保证组合证据的概率<=每个单一证据的概率。不然如果你组合证据的概率大了,组合证据成立时,单一证据由于概率小,成立不了,你这不是没照顾到。取最小值,最小值都满足了,那肯定OK了。那我为什么不取0,这不任意情况都满足了,但是一切要从实际出发,这堆证据最小也有Emin的概率发生!(主席始终代表最底层的据意)

当证据是析取的形式:
E = E 1 ∪ E 2 ∪ . . . ∪ E n E=E1\quad∪ \quad E2\quad ∪\quad ... \quad ∪\quad En E=E1E2...En
组合证据的概率为
P ( E ∣ S ) = max ⁡ P ( E i ∣ S ) P(E|S)=\max{P(E_{i}|S)} P(ES)=maxP(EiS)
而这时候要取最大值,为什么?析取

由于“析”有将木头分开的意思,所以就引申为分开、分析、分解、分散等意思。

分开着取,意味着我没必要都照顾到啊,所以只要保证组合证据的概率>=某一单一证据的概率。但问题又来了!为什么不取1,这不任意情况都满足了,要始终记住一切从实际出发,代表不是无根之木,无源之水。他(她(它(祂)))最多也只能代表最高层的据意。为什么不取最小值,这不至少有一种情况被满足。懂得都懂,是因为考虑群体利益最大化,当组合证据概率=最小值,每次都只能满足一据,当组合证据概率=最大值,每次可以满足所有证据的意愿!虽然单一证据失败了,但是组合证据带动所有证据,向最高证据看齐,最终所有证据都获得了肯定,这是集体精神的胜利,万岁!

3.3.1.3 不确定性的更新

(再理解一次:先验概率,事先给的概率。后验概率,试验后得到的概率。观察,沟通现实的桥梁。LS:E对H的支持程度。LN:~E对H的支持程度)

现在有先验概率P(E),P(H),LS,LN的值,
要做的是,
在观察S下,
把P(H)更新为后验概率P(H|S)。

  • (1) 证据肯定为真
    观不观察已经没得关系了,P(E|S)=P(E)=1,P(H|E)=P(H|S)
    P ( H ∣ E ) = L S × P ( H ) ( L S − 1 ) × P ( H ) + 1 P(H|E)=\frac{LS\times P(H)}{(LS-1)\times P(H)+1} P(HE)=(LS1)×P(H)+1LS×P(H)
    上述公式回到推导LS的式子反求P(H|E)即可。
  • (2) 证据肯定为假
    观不观察已经没得关系了,P(E|S)=P(E)=0,P(H|~E)=P(H|S)
    P ( H ∣ ¬ E ) = L N × P ( H ) ( L N − 1 ) × P ( H ) + 1 P(H|\neg E)=\frac{LN\times P(H)}{(LN-1)\times P(H)+1} P(H¬E)=(LN1)×P(H)+1LN×P(H)
  • (3) 证据不确定真假
    现在需要观察了,讨论观察的情况。
    • P(E|S)=1,观察发现证据肯定为真,回到(1)
      P ( H ∣ S ) = P ( H ∣ E ) = . . . P(H|S)=P(H|E)=... P(HS)=P(HE)=...

    • P(E|S)=0,观察发现证据肯定为假,回到(2)
      P ( H ∣ S ) = P ( H ∣ ¬ E ) = . . . P(H|S)=P(H|\neg E)=... P(HS)=P(H¬E)=...

    • P(E|S)=P(E),观察发现:与观察没得关系。E概率不变,所以H概率也不变。
      P ( H ∣ S ) = P ( H ) P(H|S)=P(H) P(HS)=P(H)

    • P(E|S)不是特殊值。观察发现没有规律。
      这里采取线性插值的手段。

      在这里插入图片描述
      现在求常规点就很好求了,直接相似三角形,别看下面公式长。
      P ( H ∣ S ) = { P ( H ∣ ¬ E ) + P ( H ) − P ( H ∣ ¬ E ) P ( E ) × P ( E ∣ S ) 0 ≤ P ( E ∣ S ) < P ( E ) P ( H ) + P ( H ∣ E ) − P ( H ) 1 − P ( E ) × [ P ( E ∣ S ) − P ( E ) ] P ( E ) ≤ P ( E ∣ S ) ≤ 1 P(H|S)=\begin{cases} P(H|\neg E)+\frac{P(H)-P(H|\neg E)}{P(E)}\times P(E|S)\quad 0\le P(E|S)<P(E)\\ P(H)+\frac{P(H|E)-P(H)}{1-P(E)}\times\left[P(E|S)-P(E)\right] \quad P(E)\le P(E|S)\le 1 \end{cases} P(HS)={P(H¬E)+P(E)P(H)P(H¬E)×P(ES)0P(ES)<P(E)P(H)+1P(E)P(HE)P(H)×[P(ES)P(E)]P(E)P(ES)1
      示范一下求 [0,P(E)) 的点。
      先画辅助线。

      在这里插入图片描述
      勾出相似边

      在这里插入图片描述

P ( H ∣ S i ) = P ( H ∣   E ) + X P(H|Si)=P(H|~E)+X P(HSi)=P(H E)+X
X P ( H ) − P ( H ∣ ¬ E ) = P ( E ∣ S i ) P ( E ) \frac{X}{P(H)-P(H|\neg E)}=\frac{P(E|S_{i})}{P(E)} P(H)P(H¬E)X=P(E)P(ESi)
合起来就是
P ( H ∣ S i ) = P ( H ∣   E ) + ( P ( H ) − P ( H ∣ ¬ E ) ) × P ( E ∣ S i ) P ( E ) P(H|Si)=P(H|~E)+\frac{(P(H)-P(H|\neg E))\times P(E|S_{i})}{P(E)} P(HSi)=P(H E)+P(E)(P(H)P(H¬E))×P(ESi)
更新后验概率就这样,完事。

3.3.1.4 结论不确定性的合成

假设有n条知识都支持同一结论H…那么在n个观察下H的后验几率为
O ( H ∣ S 1 , S 2 . . . S n ) = O ( H ∣ S 1 ) O ( H ) × O ( H ∣ S 2 ) O ( H ) × . . . × O ( H ∣ S n ) O ( H ) × O ( H ) O(H|S_{1},S_{2}...S_{n})=\frac{O(H|S_{1})}{O(H)}\times\frac{O(H|S_{2})}{O(H)}\times...\times\frac{O(H|S_{n})}{O(H)}\times O(H) O(HS1,S2...Sn)=O(H)O(HS1)×O(H)O(HS2)×...×O(H)O(HSn)×O(H)
这也好理解,比如看
O ( H ∣ S 1 ) O ( H ) \frac{O(H|S_{1})}{O(H)} O(H)O(HS1)
熟悉的同学一眼看出,是如下的变形
O ( H ∣ E ) = L S × O ( H ) O(H|E)=LS\times O(H) O(HE)=LS×O(H)
O ( H ∣ S 1 ) O ( H ) = L S 1 \frac{O(H|S_{1})}{O(H)}=LS_{1} O(H)O(HS1)=LS1
那么后验几率其实是
O ( H ∣ S 1 , S 2 . . . S n ) = L S 1 × L S 2 × . . . × L S n × O ( H ) O(H|S_{1},S_{2}...S_{n})=LS_{1}\times LS_{2}\times ...\times LS_{n}\times O(H) O(HS1,S2...Sn)=LS1×LS2×...×LSn×O(H)
用前面的话说,在S1,S2...Sn的支持下,加上H自己的努力,就是在支持的条件下努力的结果。

3.3.1.5 Bayes推理的例子

能给出例子当然更好啦。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值