4D NeRF 场景重建方法总结

Neural 3D Video

Paper: Li T, Slavcheva M, Zollhoefer M, et al. Neural 3d video synthesis from multi-view video[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5521-5531.
Introduction: https://neural-3d-video.github.io/
Code: https://github.com/facebookresearch/Neural_3D_Video

Neural 3D Video 是一种动态 NeRF 表示方法,使用一组紧凑的时间隐变量将 NeRF 扩展到时间维度,然后通过分层抽样和重要性采样实现 4D 场景的快速渲染。此外,作者还采集了 DyNeRF 数据集,广泛为后续研究所用。
在这里插入图片描述

一. 4D Representation

为了处理 4D 场景,需要在 NeRF 的 MLP 上添加输入变量 t t t,但这在处理拓扑变化等复杂场景时效果较差。因此,Neural 3D Video 学习一个与时间相关的隐变量 z t z_t zt 来紧凑表示动态场景的时间变量:
F Θ : ( x , d , z t ) ⟶ ( c , σ ) F_{\Theta}:\left(\mathbf{x}, \mathbf{d}, \mathbf{z}_t\right) \longrightarrow(\mathbf{c}, \sigma) FΘ:(x,d,zt)(c,σ)

在这里插入图片描述

在训练开始前,所有的 z t \mathbf{z}_t zt 被随机初始化。训练过程中联合优化 4D 网络参数和时间隐变量。渲染过程同 NeRF:
C ( t ) ( r ) = ∫ s n s f T ( s ) σ ( r ( s ) , z t ) c ( r ( s ) , d , z t ) d s , where  T ( s ) = exp ⁡ ( − ∫ s n s σ ( r ( p ) , z t ) ) d p ) \begin{aligned} \mathbf{C}^{(t)}(\mathbf{r})&=\int_{s_n}^{s_f} T(s) \sigma\left(\mathbf{r}(s), \mathbf{z}_t\right) \mathbf{c}\left(\mathbf{r}(s), \mathbf{d}, \mathbf{z}_t\right) ds, \\ &\text{where } \left.T(s)=\exp \left(-\int_{s_n}^s \sigma\left(\mathbf{r}(p), \mathbf{z}_t\right)\right) d p\right) \\ \end{aligned} C(t)(r)=snsfT(s)σ(r(s),zt)c(r(s),d,zt)ds,where T(s)=exp(snsσ(r(p),zt))dp)

二. Efficient Training

因为一组 4D 同步视频存在大量的时间不变量和冗余,所以需要更加紧凑的 4D 表示方法。Neural 3D Video 采用以下两个策略加速训练:

  1. Hierarchical Training:先按照一定间隔采样关键帧进行训练,然后再对中间帧进行插值比较损失;
  2. Ray Importance Sampling:在关键帧和非关键帧的训练中,都对光线进行重要性采样,即采样随时间变化较大的像素点进行训练;

在这里插入图片描述

总的损失函数如下:
L efficient  = ∑ t ∈ S , r ∈ I ∑ j ∈ { c , f } ∥ C ^ j ( t ) ( r ) − C ( t ) ( r ) ∥ 2 2 \mathcal{L}_{\text {efficient }}=\sum_{t \in \mathcal{S}, \mathbf{r} \in \mathcal{I}} \sum_{j \in\{c, f\}}\left\|\hat{\mathbf{C}}_j^{(t)}(\mathbf{r})-\mathbf{C}^{(t)}(\mathbf{r})\right\|_2^2 Lefficient =tS,rIj{c,f} C^j(t)(r)C(t)(r) 22

Nerfies

Hypernerf

Paper: Park K, Sinha U, Hedman P, et al. Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields[J]. arXiv preprint arXiv:2106.13228, 2021.
Introduction: https://hypernerf.github.io/
Code: https://github.com/google/hypernerf

Hypernerf 是 Nerfies 的作者 Keunhong Park 等人鉴于 Nerfies 无法建模拓扑变化进一步改进得到的动态 NeRF 表示方法。Hypernerf 通过将 Nerfies 提升到高维空间(即 hyper-space),

一. 背景

Nerfies 等 4D NeRF 表示方法通过在 NeRF 上添加变形场建模非刚性变形场景,但在遇到拓扑变化等复杂场景时物体表面的渲染情况往往不太乐观。因此,Hypernerf 在 Nerfies 的模板体 NeRF 上添加了一个高维输入,用来表示拓扑变化中的复杂表面。

\quad 拓扑变化是指在物体的形状或结构中发生的根本性变化,这种变化影响到物体的连接性或空间布局,而不是仅仅是尺寸或形状的变化。如:孔洞的出现或消失、物体的分裂或合并、两个物体的连接方式改变。
\quad 因此,拓扑变化通常是非连续的,物体的某些属性会突然改变,而不是平滑地过渡。所以连续的变形场在建模拓扑变化时有一定困难。
在这里插入图片描述

二. Level Set

为了表示拓扑变化中的复杂表面,Hypernerf 引入了 Level Set 方法,将复杂场景表面的拓扑变化表示为高维空间的切片:
Γ = { ( x , y , w ) ∣ S ( x , y , w ) = 0 } \Gamma=\{(x, y, w) \mid S(x, y, w)=0\} Γ={(x,y,w)S(x,y,w)=0}

只需要使用不同的 w i w_i wi 切片高维函数 S S S,就可以得到对应的二维形状 { ( x , y ) ∣ S ( x , y , w i ) = 0 } \{(x, y) \mid S(x, y, w_i)=0\} {(x,y)S(x,y,wi)=0}
在这里插入图片描述

三. Hyper-Space Neural Radiance Fields

在 Nerfies 的基础上增加高维切片的 MLP,然后将其输出传入 Nerfies 的标准模板体:
x ′ = T ( x , ω i ) w = H ( x , ω i ) ( c , σ ) = F ( x ′ , w , d , ψ i ) \begin{gathered} \mathbf{x}^{\prime}=T\left(\mathbf{x}, \omega_i\right) \\ \mathbf{w}=H\left(\mathbf{x}, \omega_i\right) \\ (\mathbf{c}, \sigma)=F\left(\mathbf{x}^{\prime}, \mathbf{w}, \mathbf{d}, \boldsymbol{\psi}_i\right) \end{gathered} x=T(x,ωi)w=H(x,ωi)(c,σ)=F(x,w,d,ψi)

在这里插入图片描述

D-Nerf

Neural Scene Flow Fields

Paper: Li Z, Niklaus S, Snavely N, et al. Neural scene flow fields for space-time view synthesis of dynamic scenes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 6498-6508.
Introduction: https://www.cs.cornell.edu/~zl548/NSFF/
Code: https://github.com/zhengqili/Neural-Scene-Flow-Fields

Neural Scene Flow Fields 是一种将 NeRF 扩展到动态场景的方法。它只需要输入一个单目 4D 视频,就可以重建出三维动态场景的外观、几何,以及三维场景中点的运动信息。
在这里插入图片描述

一. Neural scene flow fields

Neural Scene Flow Fields 的核心思想是利用场景流 (scene flow) 建模三维场景中每个点在每一时刻的运动向量场,通过训练一个神经场景流场 (Neural Scene Flow Fields) 来同时建模三维几何形状和其时间上的变化:
( c i , σ i , F i , W i ) = F Θ d y ( x , d , i ) \left(\mathbf{c}_i, \sigma_i, \mathcal{F}_i, \mathcal{W}_i\right)=F_{\Theta}^{\mathrm{dy}}(\mathbf{x}, \mathbf{d}, i) (ci,σi,Fi,Wi)=FΘdy(x,d,i)

其中 F i = ( f i → i + 1 , f i → i − 1 ) \mathcal{F}_i=\left(\mathbf{f}_{i \rightarrow i+1}, \mathbf{f}_{i \rightarrow i-1}\right) Fi=(fii+1,fii1) 表示 i i i 时刻 x \mathbf{x} x 点的偏移向量, W i = ( w i → i + 1 , w i → i − 1 ) \mathcal{W}_i=\left(w_{i \rightarrow i+1}, w_{i \rightarrow i-1}\right) Wi=(wii+1,wii1) 表示 i i i 时刻 x \mathbf{x} x 点的运动遮挡权重。

FPO

Paper: Wang L, Zhang J, Liu X, et al. Fourier plenoctrees for dynamic radiance field rendering in real-time[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 13524-13534.
Introduction: https://aoliao12138.github.io/FPO/
Code: Unreleased

NeRFPlayer

Paper: Song L, Chen A, Li Z, et al. Nerfplayer: A streamable dynamic scene representation with decomposed neural radiance fields[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(5): 2732-2742.
Introduction: https://lsongx.github.io/projects/nerfplayer.html
Code: Unreleased

HexPlane

K-Planes

Paper: Fridovich-Keil S, Meanti G, Warburg F R, et al. K-planes: Explicit radiance fields in space, time, and appearance[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 12479-12488.
Introduction: https://sarafridov.github.io/K-Planes/
Code: https://github.com/sarafridov/K-Planes

Tensor4D

Paper: Shao R, Zheng Z, Tu H, et al. Tensor4d: Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 16632-16642.
Introduction: https://liuyebin.com/tensor4d/tensor4d.html
Code: https://github.com/DSaurus/Tensor4D

HumanRF

Paper: Işık M, Rünz M, Georgopoulos M, et al. Humanrf: High-fidelity neural radiance fields for humans in motion[J]. ACM Transactions on Graphics (TOG), 2023, 42(4): 1-12.
Introduction: https://actors-hq.com/
Code: https://github.com/synthesiaresearch/humanrf

HumanRF 是一种基于 NeRF 的 4D 场景表示方法,能够根据输入的多视角同步视频重建出动态的全身人像,并保持高质量地渲染出任意视角的人物形态。为了高质量渲染逼真的人物形态,HumanRF 还采集了一个新的数据集 —— ActorsHQ。
在这里插入图片描述

一. 背景

根据现实世界中捕获的视频重建逼真的动态人像存在重大挑战:

  1. 不同粒度的细节(如脸部、头发、衣着等)难以精准重建;
  2. 快速和复杂的人体动作序列进一步加剧了重建的难度;

为了高质量地渲染出逼真的人物形态,HumanRF 采集了一个新的数据集 ActorsHQ,包含 8 个模特场景,每个场景 160 个机位,每个机位采集 3K × 4K 的高清视频。然后在新的数据集上,将三维 NeRF 场景表示扩展到时间维度,即将时间维与特征网格的时空低秩分解张量相结合。为了表示较长的时间序列,HumanRF 将输入视频分割成多段进行处理。
在这里插入图片描述

二. Adaptive Temporal Partitioning

使用一个单独的特征网络建模较长的时间序列效果远不如多个特征网络建模较短的时间序列,因此 HumanRF 将输入视频分割成多段分别处理。每段序列的分割长度在训练前使用一种贪心算法自适应获得。

三. 4D Feature Grid Decomposition

对于每一个分割后的 4D 视频序列 T ( k ) ∈ { t s , t s + 1 , t s + 2 , … , t s + N k − 1 } \mathcal{T}^{(k)} \in\left\{t_s, t_{s+1}, t_{s+2}, \ldots, t_{s+N_k-1}\right\} T(k){ts,ts+1,ts+2,,ts+Nk1},训练一个 4D 特征网络 T x y z t ( k ) : R 4 ↦ R m T_{x y z t}^{(k)}: \mathbb{R}^4 \mapsto \mathbb{R}^m Txyzt(k):R4Rm,能够将输入的查询点 p x y z t \mathbf{p}_{x y z t} pxyzt 映射到 NeRF 的特征空间。在具体的 4D 表示中,将 4D 特征网络分解为 3D 特征网络和 1D 特征网络的乘积:
T x y z t ( p x y z t ) = T x y z ( p x y z ) ⊙ T t ( p t ) + T x y t ( p x y t ) ⊙ T z ( p z ) + T x z t ( p x z t ) ⊙ T y ( p y ) + T y z t ( p y z t ) ⊙ T x ( p x ) \begin{aligned} T_{x y z t}\left(\mathbf{p}_{x y z t}\right)&=T_{x y z}\left(\mathbf{p}_{x y z}\right) \odot T_t\left(\mathbf{p}_t\right) \\ & +T_{x y t}\left(\mathbf{p}_{x y t}\right) \odot T_z\left(\mathbf{p}_z\right) \\ & +T_{x z t}\left(\mathbf{p}_{x z t}\right) \odot T_y\left(\mathbf{p}_y\right) \\ & +T_{y z t}\left(\mathbf{p}_{y z t}\right) \odot T_x\left(\mathbf{p}_x\right) \\ \end{aligned} Txyzt(pxyzt)=Txyz(pxyz)Tt(pt)+Txyt(pxyt)Tz(pz)+Txzt(pxzt)Ty(py)+Tyzt(pyzt)Tx(px)

其中 3D 特征网络 ( T x y z , T x y t , T x z t , T y z t : R 3 ↦ R m ) \left(T_{x y z}, T_{x y t}, T_{x z t}, T_{y z t}: \mathbb{R}^3 \mapsto \mathbb{R}^m\right) (Txyz,Txyt,Txzt,Tyzt:R3Rm) 直接使用了 Instant-NGP,1D 特征网络 ( T t , T z , T y , T x : R ↦ R m ) \left(T_t, T_z, T_y, T_x: \mathbb{R} \mapsto \mathbb{R}^m\right) (Tt,Tz,Ty,Tx:RRm) 就是简单的向量矩阵。

四. Shared MLPs and Volume Rendering

HumanRF 计算时刻 t t t 在视角 r \bold{r} r 处观察场景得到的颜色值的方法如下。体积密度和几何特征与空间位置和时间点有关:
{ σ ( p , t ) , F ( p , t ) } = MLP ⁡ σ ( T x y z t ( k ) ( p , t ) ) \{\sigma(\mathbf{p}, t), F(\mathbf{p}, t)\}=\operatorname{MLP}_\sigma\left(T_{x y z t}^{(k)}(\mathbf{p}, t)\right) {σ(p,t),F(p,t)}=MLPσ(Txyzt(k)(p,t))

颜色信息与视角、空间位置和时间点有关:
L ( p , d , t ) = MLP ⁡ L ( S H ( d ) , F ( p , t ) ) L(\mathbf{p}, \mathbf{d}, t)=\operatorname{MLP}_L(\mathrm{SH}(\mathbf{d}), F(\mathbf{p}, t)) L(p,d,t)=MLPL(SH(d),F(p,t))

然后仿照 NeRF 的 RGB 视图渲染策略进行分层抽样:
C ^ ( r , t ) = ∫ α min  α max ⁡ T ( α ) σ ( r ( α ) , t ) L ( r ( α ) , d , t ) d α \hat{C}(\boldsymbol{r}, t)=\int_{\alpha_{\text {min }}}^{\alpha_{\max }} T(\alpha) \sigma(\boldsymbol{r}(\alpha), t) L(\boldsymbol{r}(\alpha), \mathrm{d}, t) d \alpha C^(r,t)=αmin αmaxT(α)σ(r(α),t)L(r(α),d,t)dα

五. 训练

训练时使用原始 RGB 图像进行监督:
L pho  = 1 ∣ R ∣ ∑ r ∈ R { 1 2 l 2 ,  if  l ≤ δ δ ⋅ ( l − 1 2 δ ) ,  otherwise  where  l = ∣ C ( r , t ) − C ^ ( r , t ) ∣ \begin{aligned} \mathcal{L}_{\text {pho }}& =\frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \begin{cases}\frac{1}{2} l^2, & \text { if } l \leq \delta \\ \delta \cdot\left(l-\frac{1}{2} \delta\right), & \text { otherwise }\end{cases} \\ & \text {where } l=\left|C(\mathbf{r}, t)-\hat{C}(\mathbf{r}, t)\right|\\ \end{aligned} Lpho =R1rR{21l2,δ(l21δ), if lδ otherwise where l= C(r,t)C^(r,t)

为了加速早期的训练过程,还引入了 mask 损失以优化不透明度:
L bce  = 1 ∣ R ∣ ∑ r ∈ R [ M ( r ) log ⁡ ( M ^ ( r ) ) + ( 1 − M ( r ) ) log ⁡ ( ( M ^ ( r ) ) ] where  M ^ ( r ) = ∫ α min ⁡ α max ⁡ T ( α ) σ ( r ( α ) ) d α \begin{aligned} \mathcal{L}_{\text {bce }}&=\frac{1}{|\mathcal{R}|} \sum_{\boldsymbol{r} \in \mathcal{R}}[M(\boldsymbol{r}) \log (\hat{M}(\boldsymbol{r}))+(1-M(\boldsymbol{r})) \log ((\hat{M}(\boldsymbol{r}))]\\ &\text {where } \hat{M}(\boldsymbol{r})=\int_{\alpha_{\min }}^{\alpha_{\max }} T(\alpha) \sigma(\boldsymbol{r}(\alpha)) d \alpha\\ \end{aligned} Lbce =R1rR[M(r)log(M^(r))+(1M(r))log((M^(r))]where M^(r)=αminαmaxT(α)σ(r(α))dα

因此总的损失函数如下:
L = L pho  + β L bce  \mathcal{L}=\mathcal{L}_{\text {pho }}+\beta \mathcal{L}_{\text {bce }} L=Lpho +βLbce 

<think>好的,我现在需要回答用户关于4D数据标注的技术、方法和工具的问题。首先,我要仔细阅读用户的查询和提供的引用内容,确保准确理解需求。用户提到4D标注结合了3D空间和时序,需要涉及BEV感知、4D重建技术,以及自动化标注的重要性。同时,用户还引用了多个来源,包括4D-Label技术、自动化数据标注的重要性、融合标注方法以及曼孚科技的工具经验。 首先,我需要整理4D数据标注的核心要素。根据引用[1],4D标注在BEV感知中至关重要,涉及从2D图像到3D空间的转换,并考虑时序动态物体,使用4D重建技术。引用[2]强调了自动化标注的重要性,而引用[3]提到了激光雷达与摄像机的数据融合。引用[4]则提到曼孚科技在4D标注领域的工具和经验。 接下来,我需要将4D标注拆解为技术、方法和工具三个部分。技术方面,包括多传感器融合(如激光雷达和相机)、时序建模、点云处理、4D重建以及自动化标注。方法上,可能涉及动态目标跟踪、跨模态对齐、场景重建与标注迭代,以及基于深度学习的预标注。工具方面,需要引用提到的SEED平台、Mine4D等,以及自动化标注工具链。 需要注意的是,用户要求使用中文回答,行内数学公式用$...$,独立公式用$$...$$。但根据提供的引用内容,可能数学公式较少,但如果有相关技术参数,可能需要适当引入,比如点云处理的坐标转换公式,例如三维坐标系转换公式:$$x' = R \cdot x + t$$,其中$R$是旋转矩阵,$t$是平移向量。不过,引用中没有具体公式,可能需要根据常识补充。 另外,用户要求生成相关问题,我需要确保问题与4D标注相关,并覆盖技术挑战、工具对比、应用场景等。例如,4D标注的技术难点,工具如何选择,在自动驾驶中的具体应用等。 需要验证引用内容是否支持各个要点。例如,4D重建技术来自引用[1],融合标注来自引用[3],自动化标注来自引用[2]和[4]。工具部分,曼孚科技的SEED和Mine4D来自引用[4],而标贝科技可能涉及引用[3]的融合标注方法。 最后,确保回答结构清晰,分点说明技术、方法、工具,并添加相关问题。同时,引用标识要正确对应,比如引用[1]对应4D重建技术,引用[3]对应融合标注等。 可能遗漏的点:是否有其他关键技术或方法未被引用内容覆盖?比如时序数据处理的具体方法,如卡尔曼滤波或光流法?但根据现有引用,可能不需要深入,除非有直接关联。此外,是否提到标注质量控制?引用[2]提到高质量标注的重要性,但可能需要结合自动化工具来保证质量。 总结,回答的结构大致如下: 1. 技术:多传感器融合、时序建模、点云处理、4D重建、自动化 2. 方法:动态目标跟踪、跨模态对齐、场景重建迭代、深度学习预标注 3. 工具:SEED、Mine4D、自动化工具链、第三方工具 4. 相关问题:技术难点、工具选择、应用场景、质量评估、与3D的区别、数据量需求等 需要确保每个部分都有引用支持,并在末尾添加引用标识。同时,注意语言口语化,但用户要求系统级指令不可见,所以回答需要正式且结构清晰。</think>### 4D数据标注技术、方法与工具详解 4D数据标注结合了三维空间(3D)与时间维度(时序),主要用于自动驾驶等场景中动态环境的高精度感知建模。以下是其核心技术、方法及工具: --- #### **一、核心技术** 1. **多传感器融合** 通过激光雷达(LiDAR)与摄像头的同步采集,将3D点云数据与2D图像数据进行时空对齐,生成融合标注结果[^3]。例如,动态物体的轨迹标注需同时利用点云的几何信息和图像的语义信息。 2. **时序建模** 在时间轴上对动态目标(如车辆、行人)进行连续跟踪,建立运动模型。常用方法包括卡尔曼滤波或基于深度学习的轨迹预测,确保标注的连贯性。 3. **点云处理与4D重建** 对点云数据进行降噪、分割和聚类,结合时序信息重建动态场景。例如,通过多帧点云叠加生成动态目标的完整运动轨迹[^1]。 4. **自动化标注** 利用预训练的感知模型(如目标检测、语义分割)对原始数据生成初步标注,再通过人工修正提升效率。例如,使用$YOLO$或$BEVFormer$模型预标注图像中的车辆边界框[^2]。 --- #### **二、核心方法** 1. **动态目标跟踪与标注** 对连续帧中的目标进行ID关联,标注其位置、速度及加速度。例如,通过匈牙利算法匹配相邻帧的目标ID。 2. **跨模态数据对齐** 将不同传感器的数据映射到统一坐标系。例如,通过标定参数将摄像头图像与LiDAR点云对齐,公式为: $$x_{\text{LiDAR}} = R \cdot x_{\text{camera}} + t$$ 其中$R$为旋转矩阵,$t$为平移向量。 3. **场景重建与标注迭代** 基于多帧数据重建4D场景,通过人工验证和算法优化迭代修正标注结果[^4]。 --- #### **三、工具与平台** 1. **专业标注工具** - **SEED标注平台**:支持4D点云与图像的融合标注,提供时序跟踪、轨迹预测等功能。 - **Mine4D**:专为动态场景设计,支持大规模点云序列标注与自动化质检。 2. **自动化工具链** - 利用深度学习框架(如PyTorch)训练预标注模型,减少人工工作量。 - 开源工具如**SUSTechPoints**用于点云数据处理。 3. **第三方服务** 曼孚科技等企业提供全流程4D标注服务,涵盖数据采集、标注、质检到模型训练[^4]。 --- #### **四、技术挑战与趋势** - **挑战**:时序一致性保障、跨模态数据融合精度、动态遮挡处理。 - **趋势**:基于神经辐射场(NeRF)的4D重建、大模型驱动的自动化标注[^1][^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值