数域
由定义1可知,复数域是最大的数域
任一数域都包含有理数域,即有理数域是最小的数域。
线性方程组的分类:非齐次,齐次
线性方程组的相容性
https://www.cnblogs.com/LittleHann/p/10547355.html#_label0
行列式
线性相关
线性无关
如果一个向量组的一个部分组线性相关,则整个向量组(延伸组)也线性相关;
1.转置行列式
2.行列式的乘法
行列式的行与列的地位是对称的
行阶梯式
行最简式
定义. 在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的其余元素全为零,就称该矩阵为行最简形矩阵。. 例如矩阵:
线性相关和线性无关的向量组
常数项列向量能不能由系数矩阵的列向量线性表出。
线性方程组的通解
标准型
矩阵的秩
向量组等价
向量组的等价性质,不是数值意义上的等价,而是解空间结构的等价性。 两个向量组等价,是在说这两个向量组的解空间结构相同。
等价的线性无关的向量组所含向量的个数相等。
等价的向量组有相同的秩
向量组的秩
解空间结构相同,进而这两个向量组的秩也相同,秩可以理解为描述解空间结构维度的度量。
线性方程组有解时,如果它的系数矩阵A的秩等于未知量的个数n,则方程组有唯一解;
1. 定理1 - 线性方程组有解判别定理
线性方程组有解的充要条件是:它的系数矩阵A与增广矩阵A’有相同的秩。
这个定理只能判断线性方程组是否有解,至于是有唯一解还是有无穷解无法判断
2. 定理2 - 线性方程组解个数判别定理
如果A的秩小于n,则方程组有无穷多个解;
3.齐次线性方程组有非零解的条件
它的系数矩阵的秩小于未知量的个数
齐次线性方程组比较特殊,如果它又唯一解那一定是零解,因此其次线性方程组要么无解,要么有无穷多个解。
3.n元齐次线性方程组的解空间的结构
齐次线性方程组的解集的线性运算封闭特性
- 1.性质1 - 其次线性方程组的任意两个解的和还是方程组的解
齐次线性方程组的解空间(线性子空间)对加法封闭。 - 2.性质2 - 其次线性方程组的任意一个解的倍数还是方程组的一个解
齐次线性方程组的解空间(线性子空间)对数量乘法封闭。
综合上述2个性质得出,齐次线性方程组的解集W是的kn一个子空间,称为方程组的解空间。
有限多个解满足一下条件
1基础解系向量个数
数域K上n元齐次线性方程组的系数矩阵A的秩小于未知量个数n时,它一定有基础解系。并且它的每一个基础解系所含解向量的个数等于 n - rank(A);
1.线性子空间的基
U子空间
子空间的向量组满足线性无关
2 线性子空间的标准基
3 非零线性子空间中基所包含的向量个数
4 n维向量空间
5 向量组的极大线性无关组和对应子空间维数的关系
向量组的秩等于由它生成的子空间的维数。
齐次线性方程组的解结构
1.非齐次线性方程组的导出组
我们把n元齐次线性方程组
称为非齐次线性方程组的导出组。
1)性质1:n元非齐次线性方程组的两个解的差是它的导出组的一个解。
2)性质2:n元非齐次线性方程组的一个解与它的导出组的一个解之和,仍是非齐次线性方程组的一个解。
2.非齐次线性方程组的通解
1)齐次组的解可以形成线性空间(不空,至少有0向量,关于线性运算封闭)
非齐次组的解不能形成线性空间,因为其解向量关于线性运算不封闭:任何齐次组的解的线性组合还是齐次组的解,但是非齐次组的任意两个解其组合一般不再是方程组的解(除非系数之和为1)而任意两个非齐次组的解的差变为对应的齐次组的解。
2)齐次组有基础解系,而非齐次只有通解
非齐次线性方程组的解集不能称为基础解系,因这些解不能生成解空间(线性运算不封闭)
如果平面个数大于维度,称为超定方程;
小于维度,称为欠定方程;
等于维度,称为适定方程;
非齐次方程组的解对应的几何意义
矩阵是一个函数
1仿射函数与矩阵
ax=y
(x,0)=>(o,ax)
1.线性空间定义:
矩阵对应了一种线性变换
线形空间相对是一种比较初级的空间;如果在里面定义了范数,就成了赋范线性空间;赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间;内积空间再满足完备性,就得到希尔伯特空间;如果空间里装载所有类型的函数,就叫泛函空间
2.线性空间是线性向量对象的集合
只要找到合适的坐标轴(也就是基),就建立了一个坐标系,就可以用坐标(表示成向量的形式)表示线性空间里任何一个对象。换句话说,给你一个空间,你就能用基和坐标来描述这个空间中的对象
向量表面上只是一列数,但是由于向量的有序性,除了这些数本身携带的信息之外,还在对应位置上携带信息。
3.线性空间中的运动用线性变换来表达
线性空间中的运动,被称为线性变换。也就是说,从线性空间中的一个点运动到任意的另外一个点,都可以通过一个线性变化来完成。
在线性空间中,当选定一组基之后,不仅可以用一个向量来描述空间中的任何一个对象,而且可以用矩阵乘法来描述该空间中的任何一个运动(变换)。而使某个对象发生对应运动的方法,就是用代表那个运动的矩阵,乘以代表那个对象的向量。
旋转变换是一种线性变换,它将所有向量点共同移动了一个相同的角度。
矩阵映射的本质是向量基的变换
矩阵映射的本质是基改变,导致向量的坐标发生变化
矩阵是拉伸和旋转这两种运动的结合
对于方阵而言,矩阵不会进行纬度的升降,所以矩阵代表的运动实际上只有两种:
旋转
拉伸
左乘
代表进行一个向量基的旋转
继续左乘对角矩阵
可以看到:
特征值就是拉伸的大小
特征向量指明了拉伸的方向
反向变换(即求逆)也是同样道理
复合矩阵乘法是几何运动的叠加
1.矩阵乘法的数学公式定义
1. 只有左矩阵的列数与右矩阵的行数相同的两个矩阵才能相乘;
2. 乘积矩阵的(i,j)元等于左矩阵的第 i 行与右矩阵的第 j 列的对应元素的乘积之和;
3. 乘积矩阵的行数等于左矩阵的行数,乘积矩阵的列数等于右矩阵的列数;
矩阵的乘法本质上是将矩阵对应的变换应用到被乘的向量组上。如果是多个矩阵相乘,则可以理解为复合变换函数,即f(g(x…)),将所有的变换综合在一起整体作用于被作用向量组