线性代数基础概念与重要定义汇总

马上要开始一大波夏令营面试了,前不久thu叉院的一面问到了概率分布,没有准备好,用了一周左右的时间断断续续的复习了一下线性代数,后面再概率论吧,主要总结了一些基础知识,概念和性质。

一、行列式-计算方法与重要性质

行列式定义 \color{red}\textbf{行列式定义} 行列式定义
行列式的定义依赖于逆序数与全排列,需要注意的是,行列式只是方阵的概念。
在这里插入图片描述


行列式计算以及性质 \color{red}\textbf{行列式计算以及性质} 行列式计算以及性质
行列式的计算除了直接用定义以外,可以使用如下性质进行计算的简化。

1、三角形行列式的值,等于对角线元素的乘积。计算时,一般需要多次运算来把行列式转换为上三角型或下三角型
2、交换行列式中的两行(列),行列式变号(交换)
3、行列式中某行(列)的公因子,可以提出放到行列式之外。(倍乘)(注:矩阵是全部元素都乘,都提取)
4、行列式的某行乘以a,加到另外一行,行列式不变,常用于消去某些元素。(倍加)
5、若行列式中,两行(列)完全一样,则行列式为0;可以推论,如果两行(列)成比例,行列式为0。
6、行列式展开:行列式的值,等于其中某一行(列)的每个元素与其代数余子式乘积的和;但若是另一行(列)的元素与本行(列)的代数余子式乘积求和,则其和为0


行列式重要公式 \color{red}\textbf{行列式重要公式} 行列式重要公式

在这里插入图片描述
拉普拉斯展开式中,m,n分别是A,B矩阵的阶数。


方阵的行列式 \color{red}\textbf{方阵的行列式} 方阵的行列式

  • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
  • ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB
  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1,A是n阶矩阵。
  • ∣ A ∣ − 1 = ∣ A − 1 ∣ |A|^{-1}=|A^{-1}| A1=A1
  • A的行列数是A所有特征值的乘积。

相关博文:

https://blog.csdn.net/xuejianbest/article/details/85051344utm_medium=distribute.pc_relevant.none-task-blog-baidujs-2
https://blog.csdn.net/xuejianbest/article/details/85050784?ops_request_misc=&request_id=&biz_id=102&utm_term=%E8%A1%8C%E5%88%97%E5%BC%8F&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-6-85050784
https://blog.csdn.net/wuxintdrh/article/details/98424632?ops_request_misc=&request_id=&biz_id=102&utm_term=%E8%A1%8C%E5%88%97%E5%BC%8F%E7%9A%84%E4%B8%BB%E8%A6%81%E5%85%AC%E5%BC%8F&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-98424632

二、矩阵的秩,特征值与特征多项式

矩阵的特征值刻画矩阵的奇异性、反映矩阵所有对角元素的结构、刻画矩阵的正定性。


秩 \color{red}\textbf{秩}
一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

如果A中,存在一个i阶子式不为0,且所有i+1阶子式对应的行列式值为0,那么r(A)=i(所谓的i阶子式即在矩阵中人去一个i*i的方阵)

求矩阵的秩时,除了利用定义法和上面的观察法,主要是通过性质,经过初等变换,矩阵秩不变。若A可逆,则r(AB)=r(BA)=r(B)


特征值与特征向量 \color{red}\textbf{特征值与特征向量} 特征值与特征向量
在这里插入图片描述
物理意义:我们可以将矩阵看成是一个力的混合体,但需要注意的是,这个力的混合体中各个力是相互独立的!即特征向量之间线性无关,是无法做力的合成(这里只是假设其无法合成,有更好的解释以后会补充)的。其中力的个数为矩阵的秩,力的大小为特征值的大小,力的方向即为特征向量的方向

详细解释见深度理解矩阵的奇异值,特征值

特征多项式 \color{red}\textbf{特征多项式} 特征多项式
A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。
在这里插入图片描述


特征值相关的重要性质 \color{red}\textbf{特征值相关的重要性质} 特征值相关的重要性质

  • A A A是n阶矩阵, λ 1 , . . , λ n \lambda_1,..,\lambda_n λ1,..,λn是矩阵 A A A的特征值,那么我们有如下两条性质 1 : ∑ λ i = ∑ a i i , 2 : ∏ λ i = ∣ A ∣ 1:\sum\lambda_i=\sum a_{ii},2:\prod\lambda_i=|A| 1:λi=aii2:λi=A
  • 不同特征值对应的特征向量线性无关。
  • 实对阵矩阵 A A
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值