Ubuntu22.04配置cuda/cudnn/pytorch

安装cuda

官网下载.run文件并且安装

nvcc -V        # 验证电脑中是否有CUDA

在这里插入图片描述

nvidia-smi  # 查看cuda最高支持版本

在这里插入图片描述
接下来要去cuda官网找cuda下载: cuda官网
这里都有相关的教程的。
在这里插入图片描述

chmod 777 cuda_12.4.0_550.54.14_linux.run
sudo sh cuda_12.4.0_550.54.14_linux.run					# 这时候要等个几十秒左右

按回车continue
在这里插入图片描述
输入accept
在这里插入图片描述
之前装过NVIDIA驱动了,这里就回车取消选择,接着回车install,开始安装
在这里插入图片描述
估计等个几十秒左右完成
在这里插入图片描述

/etc/profile中配置cuda环境变量

在Linux系统中,/etc/profile 是一个全局的配置文件,用于设置所有用户登录时的环境变量和启动脚本。当需要配置 CUDA 环境变量(例如 PATH 和 LD_LIBRARY_PATH)时,将其添加到 /etc/profile 文件中是一种常见的做法。这种做法的主要目的是为了让 CUDA 工具链(如 nvcc 编译器和其他库)能够在任何终端会话中被正确识别和使用。
PATH 环境变量定义了系统查找可执行文件的路径。CUDA 安装后,其工具链(如 nvcc 编译器)通常位于 /usr/local/cuda/bin 目录下。如果这个目录没有被添加到 PATH 中,系统就无法直接找到这些工具。
LD_LIBRARY_PATH 环境变量定义了动态链接库的搜索路径。CUDA 的运行时库(如 libcudart.so)通常位于 /usr/local/cuda/lib64 目录下。如果没有正确配置 LD_LIBRARY_PATH,程序在运行时可能会找不到这些库,导致错误。
如果让所有用户都能使用 CUDA 工具链,而不仅仅是某个特定用户,那么将环境变量配置到 /etc/profile 是最合适的选择。这样可以避免为每个用户单独配置环境变量的麻烦。

sudo gedit /etc/profile
# 在最后加入:
export PATH=$PATH:/usr/local/cuda-12.4/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.4/lib64

使环境变量立即生效

 source /etc/profile

查看是否生效

nvcc -V

在这里插入图片描述
完成cuda的安装

cudnn安装

官网找cuda版本对应的cudnn版本下载

cudnn官网链接,这个网站好像只能看到cudnn8的版本与cuda对应。
cudnn与cuda版本对应的下载链接
在这里插入图片描述
这里选对应cuda12版本的cudnn就行,我选个9.5.0吧

复制相应文件到系统文件中

sudo cp cudnn-linux-x86_64-9.5.0.50_cuda12-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp cudnn-linux-x86_64-9.5.0.50_cuda12-archive/lib/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

查看安装情况

cat /usr/local/cuda-12.4/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述

安装pytorch

官网找cuda对应版本的pytorch

到下面这个链接里找cuda对应版本的pytorch,用相应的命令安装

pytorch官网安装链接
这里我用pytorch2.4.0的

conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia

python代码测试pytorch-GPU版本安装情况

import torch
torch.cuda.is_available()
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

都有输出,安装完成
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值