【ACM数论】贝尔数

贝尔数(Bell Number)

贝尔数表示的是基数为 n n n的集合的划分成两两不想交的子集的划分方案数,记作 B n B_n Bn

贝尔数的前几项为: 1 , 1 , 2 , 5 , 15 , 52 , 203.......... 1,1,2,5,15,52,203.......... 1,1,2,5,15,52,203..........

1、组合意义推导

我们考虑第 n + 1 n+1 n+1个元素 b n + 1 b_{n+1} bn+1,那么可以对其分类讨论:

(1)、如果 b n + 1 b_{n+1} bn+1单独分为一个子集,则不用从 n n n个元素中选择元素出来和其组成一个子集,故此时的方案数为: C n 0 B n C_n^0B_n Cn0Bn

(2)、如果 b n + 1 b_{n+1} bn+1和一个元素组成一个子集,则需要从 n n n个元素中选出一个元素与之组成一个子集,故此时的方案数为: C n 1 B n − 1 C_n^1B_{n-1} Cn1Bn1

(3)、如果 b n + 1 b_{n+1} bn+1和两个元素组成一个子集,则需要从 n n n个元素中选出两个元素与之组成一个子集,故此时的方案数为: C n 2 B n − 2 C_n^2B_{n-2} Cn2Bn2

. . . . . . . . . . .......... ..........

以此类推,那么我们可以得到递推式:
B n + 1 = ∑ k = 0 n C n k B n − k = ∑ k = 0 n C n k B k \begin{aligned} B_{n+1}&=\sum_{k=0}^{n}C_n^{k}B_{n-k}\\ &=\sum_{k=0}^{n}C_n^{k}B_k \end{aligned} Bn+1=k=0nCnkBnk=k=0nCnkBk
另一种意义

我们还可以考虑另外一种组合意义:

(1)、将 n n n个元素分成 1 1 1个子集,此时方案数: { n 1 } \begin{Bmatrix}n\\\\1\end{Bmatrix} n1

(2)、将 n n n个元素分成 2 2 2个子集,此时方案数: { n 2 } \begin{Bmatrix}n\\\\2\end{Bmatrix} n2

(3)、将 n n n个元素分成 3 3 3个子集,此时方案数: { n 3 } \begin{Bmatrix}n\\\\3\end{Bmatrix} n3

. . . . . . . . ........ ........

以此类推,我们可以得到新的递推式:
B n = ∑ k = 0 n { n k } B_n=\sum_{k=0}^n\begin{Bmatrix}n\\\\k\end{Bmatrix} Bn=k=0n nk
这种推导方式也推导出了,贝尔数第二类斯特林数的关系

2、生成函数推导

设 b ( x ) 为序列【 B 1 , B 2 , B 3 . . . . B n 】的生成函数 则 b ( x ) = ∑ i = 0 ∞ B i x i i ! ∴ b ( x ) = ∑ i = 0 ∞ ∑ k = 0 i − 1 C i − 1 k B k x i i ! 改变 i 与 k 的求和顺序 ∴ b ( x ) = ∑ k = 0 ∞ B k ∑ i = k + 1 ∞ C i − 1 k x i i ! = ∑ k = 0 ∞ B k ∑ i = k + 1 ∞ ( i − 1 ) ! ( i − k − 1 ) ! k ! x i i ! = ∑ k = 0 ∞ B k ∑ i = k + 1 ∞ 1 i ( i − k − 1 ) ! k ! x i 对 b ( x ) 求关于 x 的导数 ∴ b ‘ ( x ) = ∑ k = 0 ∞ B k ∑ i = k + 1 ∞ 1 ( i − k − 1 ) ! k ! x i − 1 = ∑ k = 0 ∞ B k k ! ∑ i = k + 1 ∞ 1 ( i − k − 1 ) ! x i − 1 = ∑ k = 0 ∞ B k k ! ∑ i = 0 ∞ 1 i ! x i − 1 x k + 1 = ∑ k = 0 ∞ B k x k k ! ∑ i = 0 ∞ 1 i ! x i = b ( x ) e x ∴ b ‘ ( x ) b ( x ) = e x 又 ∵ l n ( f ( x ) ) = f ‘ ( x ) f ( x ) ∴ l n ( b ( x ) ) = e x ∴ b ( x ) = e e x + c , c 为常数 代入计算得 C = − 1 ∴ b ( x ) = e e x − 1 设b(x)为序列【B_1,B_2,B_3....B_n】的生成函数 \\ 则b(x)=\sum_{i=0}^{\infty}B_i\frac{x^i}{i!}\\ \therefore b(x)=\sum_{i=0}^{\infty}\sum_{k=0}^{i-1}C_{i-1}^{k}B_k\frac{x^i}{i!}\\改变i与k的求和顺序\\ \begin{aligned} \therefore b(x)&=\sum_{k=0}^{\infty}B_k\sum_{i=k+1}^{\infty}C_{i-1}^{k}\frac{x^i}{i!}\\ &=\sum_{k=0}^{\infty}B_k\sum_{i=k+1}^{\infty}\frac{(i-1)!}{(i-k-1)!k!}\frac{x^i}{i!}\\ &=\sum_{k=0}^{\infty}B_k\sum_{i=k+1}^{\infty}\frac{1}{i(i-k-1)!k!}x^i\\ \end{aligned} \\ 对b(x)求关于x的导数\\ \begin{aligned} \therefore b^{`}(x)&=\sum_{k=0}^{\infty}B_k\sum_{i=k+1}^{\infty}\frac{1}{(i-k-1)!k!}x^{i-1}\\ &=\sum_{k=0}^{\infty}\frac{B_k}{k!}\sum_{i=k+1}^{\infty}\frac{1}{(i-k-1)!}x^{i-1}\\ &=\sum_{k=0}^{\infty}\frac{B_k}{k!}\sum_{i=0}^{\infty}\frac{1}{i!}x^{i-1}x^{k+1}\\ &=\sum_{k=0}^{\infty}\frac{B_kx^k}{k!}\sum_{i=0}^{\infty}\frac{1}{i!}x^i\\ &=b(x)e^x\\ \end{aligned}\\ \therefore \frac{b^{`}(x)}{b(x)}=e^x \\ 又\because ln(f(x))=\frac{f^{`}(x)}{f(x)}\\ \therefore ln(b(x))=e^x \\ \therefore b(x)=e^{e^x+c},c为常数 \\代入计算得C=-1\\ \therefore b(x)=e^{e^x-1} b(x)为序列【B1,B2,B3....Bn】的生成函数b(x)=i=0Bii!xib(x)=i=0k=0i1Ci1kBki!xi改变ik的求和顺序b(x)=k=0Bki=k+1Ci1ki!xi=k=0Bki=k+1(ik1)!k!(i1)!i!xi=k=0Bki=k+1i(ik1)!k!1xib(x)求关于x的导数b(x)=k=0Bki=k+1(ik1)!k!1xi1=k=0k!Bki=k+1(ik1)!1xi1=k=0k!Bki=0i!1xi1xk+1=k=0k!Bkxki=0i!1xi=b(x)exb(x)b(x)=exln(f(x))=f(x)f(x)ln(b(x))=exb(x)=eex+c,c为常数代入计算得C=1b(x)=eex1

3、性质

引理:

B n + m = ∑ i = 0 n C n i B i ∑ j = 0 m j n − i { m j } B_{n+m}=\sum_{i=0}^{n}C_n^iB_i\sum_{j=0}^mj^{n-i}\begin{Bmatrix}m\\\\j\end{Bmatrix} Bn+m=i=0nCniBij=0mjni mj

组合意义证明:

​ 把 n + m n+m n+m个元素分成 n n n个元素和 m m m个元素;首先枚举 m m m个元素划分成 j j j个集合,此时有 { m j } \begin{Bmatrix}m\\\\j\end{Bmatrix} mj ;再枚举 n n n个元素中选 i i i个出来任意划分 成子集,此时有 C n i B i C_n^iB_i CniBi;还剩下 n − i n-i ni个元素,那么这 n − i n-i ni个元素必然在 j j j个集合中,此时有 j n − i j^{n-i} jni,然后根据乘法原理将其相乘,便是最后的结果

3.1、Dobinski公式:

B n = 1 e ∑ k = 0 ∞ k n k ! B_n=\frac{1}{e}\sum_{k=0}^{\infty}\frac{k^n}{k!} Bn=e1k=0k!kn

​ 期望为 n n n的泊松分数的 n n n次矩

3.2、Touchard同余

若对 ∀ p ∈ p r i m e s , 有 B p + n ≡ B n + B n + 1 ( m o d   p ) 若对\forall p\in primes,有B_{p+n}\equiv B_n+B_{n+1}(mod\space p) 若对pprimes,Bp+nBn+Bn+1(mod p)

​ 证明:
B n + p = ∑ i = 0 n C n i B i ∑ j = 0 p j n − i { p j } = ∑ j = 0 p { p j } ∑ i = 0 n C n i B i j n − i 又 ∵ 对于 ∀ j ∈ ( 1 , p ) 且 p ∈ p r i m e s , 有 { p j } ≡ 0 ( m o d   p ) ∴ B n + p   m o d   p = ∑ j = 0 p { p j } ∑ i = 0 n C n i B i j n − i   m o d   p = ( ∑ j = 0 p { p j }   m o d   p ) ( ∑ i = 0 n C n i B i j n − i   m o d   p )   m o d   p = ( { p 1 } + 0 + { p p } ) ( ∑ i = 0 n C n i B i j n − i   m o d   p )   m o d   p = ( { p 1 } ( ∑ i = 0 n C n i B i 1 n − i   m o d   p )   m o d   p + { p p } ( ∑ i = 0 n C n i B i p n − i   m o d   p )   m o d   p )   m o d   p = ( ∑ i = 0 n C n i B i 1 n − i + ∑ i = 0 n C n i B i p n − i )   m o d   p = ( ∑ i = 0 n C n i B i + ∑ i = 0 n C n i B i p n − i )   m o d   p = ( B n + 1 + ∑ i = 0 n C n i B i p n − i )   m o d   p 又 ∵ 对 ∀ i > 0 , p i ≡ 0 ( m o d   p ) ∴ ∑ i = 0 n C n i B i p n − i   m o d   p = C n n B n p n − n   m o d   p = B n   m o d   p ∴ B n + p ≡ B n + 1 + B n (   m o d   p ) 故:结论得证 \begin{aligned} B_{n+p}&=\sum_{i=0}^{n}C_n^iB_i\sum_{j=0}^pj^{n-i}\begin{Bmatrix}p\\\\j\end{Bmatrix}\\ &=\sum_{j=0}^p\begin{Bmatrix}p\\\\j\end{Bmatrix}\sum_{i=0}^{n}C_n^iB_ij^{n-i}\\ 又\because 对于\forall &j\in(1,p)且p\in primes,有 \begin{Bmatrix}p\\\\j\end{Bmatrix}\equiv0(mod\space p) \\ \therefore B_{n+p}\space mod\space p&=\sum_{j=0}^p\begin{Bmatrix}p\\\\j\end{Bmatrix}\sum_{i=0}^{n}C_n^iB_ij^{n-i}\space mod\space p\\ &=(\sum_{j=0}^p\begin{Bmatrix}p\\\\j\end{Bmatrix}\space mod\space p)(\sum_{i=0}^{n}C_n^iB_ij^{n-i}\space mod\space p)\space mod\space p\\ &=(\begin{Bmatrix}p\\\\1\end{Bmatrix}+0+\begin{Bmatrix}p\\\\p\end{Bmatrix})(\sum_{i=0}^{n}C_n^iB_ij^{n-i}\space mod\space p)\space mod\space p\\ &=(\begin{Bmatrix}p\\\\1\end{Bmatrix}(\sum_{i=0}^{n}C_n^iB_i1^{n-i}\space mod\space p)\space mod\space p+\begin{Bmatrix}p\\\\p\end{Bmatrix}(\sum_{i=0}^{n}C_n^iB_ip^{n-i}\space mod\space p)\space mod\space p)\space mod\space p\\ &=(\sum_{i=0}^{n}C_n^iB_i1^{n-i}+\sum_{i=0}^{n}C_n^iB_ip^{n-i})\space mod\space p\\ &=(\sum_{i=0}^{n}C_n^iB_i+\sum_{i=0}^{n}C_n^iB_ip^{n-i})\space mod\space p\\ &=(B_{n+1}+\sum_{i=0}^{n}C_n^iB_ip^{n-i})\space mod\space p\\ 又\because 对\forall i>0,&p^i\equiv 0(mod \space p )\\ \therefore \sum_{i=0}^{n}C_n^i&B_ip^{n-i}\space mod\space p=C_n^nB_np^{n-n}\space mod\space p=B_n\space mod\space p\\ \therefore B_{n+p}&\equiv B_{n+1}+B_n(\space mod\space p)\\故:结论得证 \end{aligned} Bn+p对于Bn+p mod pi>0,i=0nCniBn+p故:结论得证=i=0nCniBij=0pjni pj =j=0p pj i=0nCniBijnij(1,p)pprimes, pj 0(mod p)=j=0p pj i=0nCniBijni mod p=(j=0p pj  mod p)(i=0nCniBijni mod p) mod p=( p1 +0+ pp )(i=0nCniBijni mod p) mod p=( p1 (i=0nCniBi1ni mod p) mod p+ pp (i=0nCniBipni mod p) mod p) mod p=(i=0nCniBi1ni+i=0nCniBipni) mod p=(i=0nCniBi+i=0nCniBipni) mod p=(Bn+1+i=0nCniBipni) mod ppi0(mod p)Bipni mod p=CnnBnpnn mod p=Bn mod pBn+1+Bn( mod p)
TIPS

证明: 对于 ∀ j ∈ ( 1 , p ) 且 p ∈ p r i m e s , 有 { p j } ≡ 0 ( m o d   p ) 对于\forall j\in(1,p)且p\in primes,有 \begin{Bmatrix}p\\\\j\end{Bmatrix}\equiv0(mod\space p) 对于j(1,p)pprimes, pj 0(mod p)
由第二类斯特林数的通项公式得: { p j } = ∑ k = 0 m ( − 1 ) k k ! ( j − k ) p ( j − k ) ! ∴ { p j }   m o d   p = ( ∑ k = 0 j ( − 1 ) k k ! ( j − k ) p ( j − k ) ! )   m o d   p = ( ∑ k = 0 j ( ( − 1 ) k k !   m o d   p ) ( ( j − k ) p ( j − k ) !   m o d   p )   m o d   p )   m o d   p 由费马小定理可得 : 对于 ∀ p ∈ p r i m e s 且 ∀ a 满足 g c d ( a , p ) = 1 ,都有 a p − 1 ≡ 1 (   m o d   p ) ∴ ( j − k ) p ( j − k ) !   m o d   p = ( j − k ) ( j − k ) !   m o d   p = 1 ( j − k − 1 ) !   m o d   p ∴ { p j }   m o d   p = ( ∑ k = 0 j ( − 1 ) k k ! 1 ( j − k − 1 ) ! )   m o d   p 这个时候不妨考虑生成函数 A ( x ) = ∑ i = 0 ∞ ( ∑ k = 0 i ( − 1 ) k k ! 1 ( j − k − 1 ) ! ) x i 通过观察发现 A ( x ) 其实是卷积的形式 不妨设 B ( x ) = ∑ i = 0 ∞ ( − 1 ) i i ! x i , C ( x ) = ∑ i = 0 ∞ 1 ( i − 1 ) ! ) x i 则 C ( x ) = ∑ i = 0 ∞ 1 ( i − 1 ) ! ) x i = x ∑ i = 0 ∞ 1 ( i − 1 ) ! x i − 1 = x ∑ i = 0 ∞ 1 i ! x i 由 e x 的泰勒展开可得 e x = ∑ i = 0 ∞ 1 i ! x i , e − x = ( − 1 ) i i ! x i 那么可得 A ( x ) = B ( x ) C ( x ) = e − x x e x = x ∴ A ( x ) = x ∴ 对于 i > 1 , ∑ k = 0 i ( − 1 ) k k ! 1 ( j − k − 1 ) ! = 0 ∴ 对于 ∀ j ∈ ( 1 , p ) 且 p ∈ p r i m e s , 有 { p j } ≡ 0 ( m o d   p ) 结论得证 由第二类斯特林数的通项公式得:\begin{Bmatrix}p\\\\j\end{Bmatrix}=\sum_{k=0}^m\frac{(-1)^k}{k!}\frac{(j-k)^p}{(j-k)!}\\ \begin{aligned} \therefore \begin{Bmatrix}p\\\\j\end{Bmatrix}\space mod\space p&=(\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k)^p}{(j-k)!})\space mod\space p\\ &=(\sum_{k=0}^j(\frac{(-1)^k}{k!}\space mod\space p)(\frac{(j-k)^p}{(j-k)!}\space mod\space p)\space mod\space p)\space mod\space p\\ \end{aligned} \\ 由费马小定理可得:对于\forall p\in primes且\forall a 满足gcd(a,p)=1,都有a^{p-1}\equiv 1(\space mod\space p)\\ \therefore \frac{(j-k)^p}{(j-k)!}\space mod\space p=\frac{(j-k)}{(j-k)!}\space mod\space p=\frac{1}{(j-k-1)!}\space mod\space p\\ \therefore \begin{Bmatrix}p\\\\j\end{Bmatrix}\space mod\space p=(\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{1}{(j-k-1)!})\space mod\space p\\ 这个时候不妨考虑生成函数A(x)=\sum_{i=0}^{\infty}(\sum_{k=0}^i\frac{(-1)^k}{k!}\frac{1}{(j-k-1)!})x^i\\ 通过观察发现A(x)其实是卷积的形式\\ 不妨设B(x)=\sum_{i=0}^{\infty}\frac{(-1)^i}{i!}x^i,C(x)=\sum_{i=0}^{\infty}\frac{1}{(i-1)!})x^i \\ 则C(x)=\sum_{i=0}^{\infty}\frac{1}{(i-1)!})x^i=x\sum_{i=0}^{\infty}\frac{1}{(i-1)!}x^{i-1}=x\sum_{i=0}^{\infty}\frac{1}{i!}x^i\\ 由e^x的泰勒展开可得e^x=\sum_{i=0}^{\infty}\frac{1}{i!}x^i,e^{-x}=\frac{(-1)^i}{i!}x^i \\ 那么可得A(x)=B(x)C(x)=e^{-x}xe^x=x \\ \therefore A(x)=x\\ \therefore 对于i>1,\sum_{k=0}^i\frac{(-1)^k}{k!}\frac{1}{(j-k-1)!}=0 \\ \therefore对于\forall j\in(1,p)且p\in primes,有 \begin{Bmatrix}p\\\\j\end{Bmatrix}\equiv0(mod\space p) \\结论得证 由第二类斯特林数的通项公式得: pj =k=0mk!(1)k(jk)!(jk)p pj  mod p=(k=0jk!(1)k(jk)!(jk)p) mod p=(k=0j(k!(1)k mod p)((jk)!(jk)p mod p) mod p) mod p由费马小定理可得:对于pprimesa满足gcd(a,p)=1,都有ap11( mod p)(jk)!(jk)p mod p=(jk)!(jk) mod p=(jk1)!1 mod p pj  mod p=(k=0jk!(1)k(jk1)!1) mod p这个时候不妨考虑生成函数A(x)=i=0(k=0ik!(1)k(jk1)!1)xi通过观察发现A(x)其实是卷积的形式不妨设B(x)=i=0i!(1)ixi,C(x)=i=0(i1)!1)xiC(x)=i=0(i1)!1)xi=xi=0(i1)!1xi1=xi=0i!1xiex的泰勒展开可得ex=i=0i!1xi,ex=i!(1)ixi那么可得A(x)=B(x)C(x)=exxex=xA(x)=x对于i>1,k=0ik!(1)k(jk1)!1=0对于j(1,p)pprimes, pj 0(mod p)结论得证

4、贝尔三角形

构造三角矩阵

满足一下递推式:
a n , m = { 1 , n = 1 , m = 1 a n − 1 , n − 1 , n > 1 , m = 1 a n , m − 1 + a n − 1 , m − 1 , n > 1 , m > 1 a_{n,m}= \begin{cases} 1,n=1,m=1\\ a_{n-1,n-1},n>1,m=1\\ a_{n,m-1}+a_{n-1,m-1},n>1,m>1 \end{cases} an,m= 1,n=1,m=1an1,n1,n>1,m=1an,m1+an1,m1,n>1,m>1

1 1 2 2 3 5 5 7 10 15 15 20 27 37 52 52 67 87 114 151 203 203 255 322 409 523 674 877 \begin{aligned} & 1 \\ & 1\quad\qquad 2 \\ & 2\quad\qquad 3\quad\qquad 5 \\ & 5\quad\qquad 7\quad\qquad 10\qquad 15 \\ & 15\qquad 20\qquad 27\qquad 37\qquad 52 \\ & 52\qquad 67\qquad 87\qquad 114\qquad 151\qquad 203\\ & 203\qquad 255\qquad 322\qquad 409\qquad 523\qquad 674\qquad 877 \\ \end{aligned} 1122355710151520273752526787114151203203255322409523674877

每行的首项为贝尔数

5、快速求贝尔数在模意义下的第 n n n

题目链接:https://vjudge.csgrandeur.cn/problem/HDU-4767

题意:求 B n   m o d   95041567 B_n \space mod \space 95041567 Bn mod 95041567

思路:

​ 首先,我们发现 95041567 95041567 95041567并不是一个素数;但是我们发现 95041567 95041567 95041567是多个不相同的素数的乘积,因此我们可以考虑CRT合并,所以我们可以列出以下方程:
95041567 = Π i p i { x ≡ a 1 (   m o d   p 1 ) x ≡ a 2 (   m o d   p 2 ) . . . . x ≡ a n (   m o d   p k ) 95041567=\Pi_ip_i\\ \begin{cases} x\equiv a_1(\space mod \space p_1)\\ x\equiv a_2(\space mod \space p_2)\\ ....\\ x\equiv a_n(\space mod \space p_k)\\ \end{cases} 95041567=Πipi xa1( mod p1)xa2( mod p2)....xan( mod pk)
​ 因此我们将问题转化为了求出一组$a_i=B_n \space mod \space p_i\$

​ 而对于每一组素数 p i p_i pi,我们可以利用 T o u c h a r d 同余 Touchard同余 Touchard同余
将 B n + p ≡ B n + 1 + B n (   m o d   p ) 改写成模意义下的矩阵相乘的形式 : [ B n + p − 1 B n + p B n + p + 1 ⋮ B n + p + p − 1 ] = [ 0 0 0 … 0 1 1 1 0 … 0 0 0 1 1 … 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 … 1 1   ] × [ B n B n + 1 B n + 2 ⋮ B n + p − 1 ] 将 B_{n+p}\equiv B_{n+1}+B_n(\space mod\space p)改写成模意义下的矩阵相乘的形式: \\ \begin{bmatrix} B_{n+p-1}\\ B_{n+p}\\ B_{n+p+1}\\ \vdots \\ B_{n+p+p-1} \end{bmatrix}= \begin{bmatrix} &0 &0 &0 &\dots&0&1\\ &1 &1 &0 &\dots&0&0\\ &0 &1 &1 &\dots&0&0\\ &\vdots &\vdots &\vdots &\ddots &\vdots&\vdots\\ &0 &0 &0 &\dots&1&1\ \end{bmatrix}\times \begin{bmatrix} B_{n}\\ B_{n+1}\\ B_{n+2}\\ \vdots \\ B_{n+p-1} \end{bmatrix} Bn+pBn+1+Bn( mod p)改写成模意义下的矩阵相乘的形式: Bn+p1Bn+pBn+p+1Bn+p+p1 = 01000110001000011001  × BnBn+1Bn+2Bn+p1
那么可以利用矩阵的递推推出第 n n n项与前几项的关系:
[ B n B n + 1 B n + 2 ⋮ B n + p − 1 ] = [ 0 0 0 … 0 1 1 1 0 … 0 0 0 1 1 … 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 … 1 1   ] n p − 1 × [ B 0 B 1 B 2 ⋮ B p − 1 ] \begin{bmatrix} B_{n}\\ B_{n+1}\\ B_{n+2}\\ \vdots \\ B_{n+p-1} \end{bmatrix}= \begin{bmatrix} &0 &0 &0 &\dots&0&1\\ &1 &1 &0 &\dots&0&0\\ &0 &1 &1 &\dots&0&0\\ &\vdots &\vdots &\vdots &\ddots &\vdots&\vdots\\ &0 &0 &0 &\dots&1&1\ \end{bmatrix}^{\frac{n}{p-1}}\times \begin{bmatrix} B_{0}\\ B_{1}\\ B_{2}\\ \vdots \\ B_{p-1} \end{bmatrix} BnBn+1Bn+2Bn+p1 = 01000110001000011001  p1n× B0B1B2Bp1
我们发现中间那个矩阵可以利用矩阵快速幂求出,那么我们只需要预处理出前 p i p_i pi B i B_i Bi,然后利用矩阵乘法就可以得到 B n   m o d   p i B_n\space mod \space p_i Bn mod pi

现在我们已经知道一组 a i a_i ai,那么利用CRT合并得到的结果,便是最后的答案!

#include <iostream>
#include <algorithm>
#include <cmath>
#include <string.h>
#include <vector>
using namespace std;
#define int long long
#define endl "\n"
const int maxn = 1e2 + 10;
const int p = 95041567;
int bell[maxn][maxn], ans[maxn];
//矩阵快速幂
int cnt;
struct jz
{
    int m[maxn][maxn];
    jz()
    {
        memset(m, 0, sizeof(m));
    }
} ot;
jz mul(jz a, jz b, int mod)
{
    jz c;
    for (int i = 1; i <= cnt; i++)
    {
        for (int j = 1; j <= cnt; j++)
        {
            c.m[i][j] = 0;
            for (int k = 1; k <= cnt; k++)
                c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j] % mod) % mod;
        }
    }
    return c;
}
jz ksm(jz a, int b, int mod)
{
    jz ans;
    for (int i = 1; i <= cnt; i++)
        for (int j = 1; j <= cnt; j++)
            ans.m[i][j] = 1 * (i == j);
    while (b)
    {
        if (b % 2)
            ans = mul(ans, a, mod);
        a = mul(a, a, mod);
        b >>= 1;
    }
    return ans;
}
//模数分解
vector<int> mod;
vector<int> a;
void div(int n)
{
    for (int i = 2; i * i <= n; i++)
    {
        if (n % i == 0)
        {
            mod.push_back(i);
            while (n % i == 0)
            {
                n /= i;
            }
        }
    }
    if (n > 1)
    {
        mod.push_back(n);
    }
}
//CRT合并
void exgcd(int a, int b, int &x, int &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return;
    }
    exgcd(b, a % b, x, y);
    int temp = x;
    x = y;
    y = temp - a / b * y;
}
int CRT(vector<int> a, vector<int> mod)
{
    int n = mod.size();
    int M = 1, ans = 0;
    for (int i = 0; i < n; i++)
    {
        M *= mod[i];
    }
    for (int i = 0; i < n; i++)
    {
        int m = M / mod[i];
        int b, y;
        exgcd(m, mod[i], b, y);
        ans = (ans + a[i] * m * b % M) % M;
    }
    return (ans % M + M) % M;
}
//贝尔三角形递推前几项贝尔数
void init()
{
    bell[1][1] = 1;
    for (int i = 2; i < maxn; i++)
    {
        for (int j = 1; j < maxn; j++)
        {
            if (j == 1)
            {
                bell[i][j] = bell[i - 1][i - 1];
            }
            else
            {
                bell[i][j] = (bell[i][j - 1] + bell[i - 1][j - 1]) % p;
            }
        }
    }
}
signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    div(95041567);
    init();
    int t;
    cin >> t;
    while (t--)
    {
        int n;
        cin >> n;
        a.clear();
        for (auto mo : mod)
        {
            cnt = mo;
            jz temp;
            temp.m[1][mo] = 1;
            for (int i = 2; i <= mo; i++)
            {
                for (int j = 1; j <= mo; j++)
                {
                    if (i == j || i == j + 1)
                    {
                        temp.m[i][j] = 1;
                    }
                }
            }
            ot = ksm(temp, n / (mo - 1), mo);
            memset(ans, 0, sizeof(ans));
            for (int i = 1; i <= mo; i++)
            {
                for (int j = 1; j <= mo; j++)
                {
                    ans[i] = (ans[i] + ot.m[i][j] * bell[j][1] % mo) % mo;
                }
            }
            a.push_back(ans[n % (mo - 1) + 1]);
        }
        int ans = CRT(a, mod);
        cout << ans << endl;
    }
    return 0;
}
  • 21
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值