搜推广遇上用户画像:Lookalike相似人群拓展算法

本文探讨了在搜索、推荐和广告系统中,如何利用用户画像通过Lookalike算法扩展高潜人群。Lookalike技术通过分析种子用户画像、运用机器学习模型和社交图结构,找到与种子用户相似的潜在用户,以提高营销和广告效果。文章以谷歌Similar Audiences、Facebook Lookalike Audiences、阿里达摩盘DMP和腾讯社交Lookalike为例,阐述了不同平台的Lookalike策略及其在实际业务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在《当推荐系统遇上用户画像:你的画像是怎么来的?》一文中,我们介绍了怎么通过TF-IDF的方式得到用户的画像。而在本文中,我们来聊一下在搜索、推荐、计算广告系统中“画像是怎么用的?”。

v2-dd3f82c23fa55d0e0de0ba2bcf0755a2_b.jpg

在互联网商业应用中,许多广告主在“搜寻潜客”时,都会遇到如难以识别高潜人群、难于平衡成本与规模等问题。而在数字营销的过程中,运营人员或者数据分析同学也是在根据已有的经验,通过用户画像的方式,扩展与历史转化人群相似的人群。比如,通过性别、年龄等筛选出化妆品的受众人群等。显然,这种方式有些粗糙。

那么,有什么方法可以优雅而有理有据的解决这个问题吗?答案是肯定,不然我费劲巴拉的写这篇文章干嘛,躺着刷刷视频不香吗...言归正传,相似人群拓展(Lookalike)的工作机制是基于种子用户画像和社交关系链寻找出相似用户。即,根据种子人群的共有属性进行自动化扩展,以扩大潜在用户覆盖面,提升营销/广告效果

v2-b6ae4ada6c553c698570e153e912a40c_b.jpg

v2-743bd1e52cbb25f997dab36134351f83_b.jpg
图片引用来自参考资料1

具体来讲,相似人群拓展(Lookal

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值