说到GNN,各位炼丹师会想到哪些算法呢?不管想到哪些算法,我们真正用到过哪些呢?确实我们可能都看过GNN相关论文,但是还是缺乏实战经验的.特别是对于推荐系统而言,我们又该如何应用这些模型呢?下面我们就从DeepWalk这篇论文开始,先讲原理,再讲实战,最后讲应用.
GNN相关背景知识
GNN的本质,是要学习网络中每个节点的表达的,这些潜在的表达对图中每个节点的“社交”关系进行了编码,把离散值的节点编码成稠密向量,后续可用于分类回归,或者作为下游任务的特征.Deepwalk充分利用了随机游走提取的“句子”,去学习句子中每个单词的表达.Deepwalk原文就提到了在数据稀疏的情况下可以把F1-scores提升10%,在一些实验中,能够用更少的训练数据获得了更好的效果.看下图的例子:
Deepwalk
问题定义:
先把问题定义为给社交网络中的每个节点进行分类,图可以表达为G=<V,E>,V就是图上所有节点,E是所有边.有一部分有label的数据GL=(V,E,X,Y),X就是节点的特征,Y就是分类的label.在传统机器学习算法中,我们都是直接学习(X,Y),并没有充分利用节点间的依赖关系.Deepwalk可以捕捉图上的拓扑关系,通过无监督方法学习每个节点的特征,学到的图特征和标签的分布是相互独立的.
随机游走:
选定一个根节点,“随机”走出一条路径,基于相邻的节点必然相似,我们就可以用这种策略去挖掘网络的社群信息.随机游走很方便并行,可以同时提取一张图上各个部分的信息.即使图有小的改动,这些路径也不需要重新计算.和word的出现频率类似,通过随机游走得到的节点访问频率都符合幂律分布,所以我们就可以用NLP相关方法对随机游走结果做相似处理,如下图所示:
所以在随机游走后,我们只需要通过下公式,学习节点向量即可:
该公式就是skip-gram,通过某个节点学习它左右的节点.我们都知道skip-gram用于文本时的语料库就是一个个句子,现在我们提取图的句子.如下所示:
算法很简单,把所有节点顺序打乱(加速收敛),然后遍历这些节点随机游走出序列,再通过skipgram算法去拟合每个节点的向量.如此反复.注:这里的随机是均匀分布去随机.当然有些图会有些“副产物”,比如用户浏览网页的顺序,可以直接输入到模型.
接下来我们看下deepwalks的核心代码:
# 代码来源
# phanein/deepwalk
# Random walk
with open(f, 'w') as fout:
for walk in graph.build_deepwalk_corpus_iter(G=G, # 图
num_paths=num_paths, # 路径数
path_length=path_length, # 路径长度
alpha=alpha, #
rand=rand): #
fout.write(u"{}\n".format(u" ".join(v for v in walk)))
class Graph(defaultdict):
"""
Efficient basic implementation of nx
这里我们看到,
该类继承defaultdict,
图其实可以简单的表示为dict,
key为节点,value为与之相连的节点
"""
def __init__(self):
super(Graph, self).__init__(list)
def nodes(self):
return self.keys()
def adjacency_iter(self):
return self.iteritems()
def subgraph(self, nodes={}):
# 提取子图
subgraph = Graph()
for n in nodes:
if n in self:
subgraph[n] = [x for x in self[n] if x in nodes]
return subgraph
def make_undirected(self):
#因为是无向图,所以v in self[u]并且 u in self[v]
t0 = time()
for v in list(self):
for other in self[v]:
if v != other:
self[other].append(v)
t1 = time()
logger.info('make_directed: added missing edges {}s'.format(t1-t0))
self.