稀疏矩阵和压缩矩阵:原理与应用

174 篇文章 4 订阅 ¥299.90 ¥399.90
本文介绍了稀疏矩阵和压缩矩阵的概念,它们在数值计算和数据科学中的应用,以及C++实现的示例。稀疏矩阵主要针对大部分元素为零的大矩阵,仅存储非零元素以节省空间。压缩矩阵如CSR和CSC进一步优化存储,提高运算效率。
摘要由CSDN通过智能技术生成

目录

稀疏矩阵

压缩矩阵

结论


在数值计算和数据科学中,稀疏矩阵和压缩矩阵是两种常见的数据结构,用于有效地存储和操作大量数据。在本文中,我们将详细探讨稀疏矩阵和压缩矩阵的原理,以及它们在实际问题中的应用。我们还将提供相关的C++代码示例。

稀疏矩阵

稀疏矩阵是其大部分元素为零的矩阵。在许多应用中,尽管矩阵的尺寸可能非常大,但非零元素的数量却相对较少。在这种情况下,使用稀疏矩阵存储和操作数据可以大大节省存储空间和计算时间。

为了有效地存储稀疏矩阵,我们通常只存储非零元素,以及它们在矩阵中的位置。以下是一个用C++实现的简单稀疏矩阵类:

#include <map>
#include <utility>

class SparseMatrix {
    std::map<std::pair<int, int>, double> values;
    
public:
    void set(int i, int j, double value) {
        values[{i, j}] = value;
    }
    
    double get(int i, int j) {
        return values[{i, j}];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值