目录
在数值计算和数据科学中,稀疏矩阵和压缩矩阵是两种常见的数据结构,用于有效地存储和操作大量数据。在本文中,我们将详细探讨稀疏矩阵和压缩矩阵的原理,以及它们在实际问题中的应用。我们还将提供相关的C++代码示例。
稀疏矩阵
稀疏矩阵是其大部分元素为零的矩阵。在许多应用中,尽管矩阵的尺寸可能非常大,但非零元素的数量却相对较少。在这种情况下,使用稀疏矩阵存储和操作数据可以大大节省存储空间和计算时间。
为了有效地存储稀疏矩阵,我们通常只存储非零元素,以及它们在矩阵中的位置。以下是一个用C++实现的简单稀疏矩阵类:
#include <map>
#include <utility>
class SparseMatrix {
std::map<std::pair<int, int>, double> values;
public:
void set(int i, int j, double value) {
values[{i, j}] = value;
}
double get(int i, int j) {
return values[{i, j}];
}
};