备战2024数学建模国赛(模型十):决策树 优秀案例(二)基于粗糙集改进的决策树手机精准营销模型

目录

基于粗糙集改进的决策树手机精准营销模型

1. 引言

2. 理论基础

2.1 决策树

2.2 粗糙集理论

3. 模型构建

3.1 数据准备

3.2 决策树构建

3.3 粗糙集与决策树的结合

4. 实验结果

4.1 实验设置

4.2 实验结果

5. 代码实现

总结

6. 数据处理与特征工程

6.1 数据预处理

6.2 特征选择与降维

7. 决策树模型构建

7.1 决策树算法

7.2 决策树剪枝

8. 实验与分析

8.1 实验设置

8.2 实验结果与分析

9. 模型优化

9.1 超参数调整

9.2 交叉验证

10. 代码实现(续)

11. 结论


基于粗糙集改进的决策树手机精准营销模型

1. 引言

在现代市场中,手机市场竞争激烈,精准营销成为提升企业竞争力的重要手段。决策树是一种广泛应用于分类和回归问题的模型,其通过树状结构来描述决策过程。粗糙集理论是一种处理不确定性和模糊性数据的有效工具,通过对数据的不确定性进行建模,能够提升决策树的准确性和鲁棒性。本文将介绍一种基于粗糙集改进的决策树手机精准营销模型,并详细阐述模型的构建过程和实验结果。

2. 理论基础
2.1 决策树

决策树是一种用于分类和回归的模型,通过将数据集划分为不同的子集,逐步构建树状结构来做出决策。常见的决策树算法包括ID3、C4.5、CART等。决策树的优点包括易于理解和解释、对数据处理较为直观。然而,决策树也存在一些缺点,如容易过拟合和对噪声数据敏感等。

2.2 粗糙集理论

粗糙集理论由波兰学者Zdzisław Pawlak于1982年提出,用于处理不确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值